THE BHĀSVATI ASTRONOMICAL HANDBOOK OF ŚATĀNANDA

Sudhira Panda
Institute of Mathematics and Applications, Andharua, Bhubaneshwar-751003, Odisha, India.
Email: sudhira@iopb,res,in

Abstract: The eleventh century Indian astronomer and mathematician Śatānandācārya wrote the Bhāsvatï on CE 7 April 1099. Correspondingly this was the Pournima (Full Moon day) of the first lunar month Caitra of the gata-kali (elapsed kali era) year 4200. This text was a significant contribution to the world of astronomy and mathematics. Satānanda had adopted the centesimal system for the calculation of the positions and motions of the heavenly bodies, which is similar to the present-day decimal system. His treatise received recognition in the text of the Karana (handbook) grantha. Commentaries of this work were made by different people at different times in history.

Although the Bhāsvatī was reissued about once every century and was well known throughout India, and even abroad, at present it is completely lost and no references to it are available in current works. The main aim of this paper is to outline its contents and bring these to the notice of a wider audience, and to highlight the genius of Śatānanda and his contribution to the world of astronomy and mathematics.
Keywords: Decimal System, Centesimal System, the Bhāsvatī, Țīkās (commentaries), Śatāṁśa, Dhruvāṅka (longitude), Ayanāṁśa

1 INTRODUCTION

The history of development of mathematics in India is as old as the Vedas. From prehistoric times, mathematics began with the rudiments of metrology and computation, of which some fragmentary evidence has survived. The sacred literature of the Vedic Hindus-the Samihïtās, the Kalpas and the Vedāngas-contains enough information to prove the mathematical abilities of those pioneers who developed this class of literature. Those pioneers, mostly astronomers, used mathematics as an instrument for the calculation of the positions of the stars and the planets. Rather, one can say that such calculations (astronomy) was urged by the development of mathematics (i.e. addition, subtraction, multiplication and division, and also fractions). The division of days, months and the seasons inspired the idea of fractions.

In all ancient calculations the astronomers assigned 360 aṁśa (degrees) to a cycle, since 360 is the smallest number divisible by the integers 1 to 10 , excluding 7. This trend is still implemented in present-day calculations. However, late in the eleventh century an astronomer named Śatānanda was born in Odisha, and he was successful in developing the mathematical research that was ongoing at this time. For convenience, he converted all cyclic calculations into multiples of one hundred. He used 1200 aṁśa while calculating the positions and motions of the planets with respect to the 12 Indian constellations, and he used 2700 aṁśa while calculating the positions and motions of the Sun and the Moon with respect to the 27 Nakṣatras.

Śatānanda's Bhāsvatī introduces very simple
methods to calculate celestial parameters, without using trigonometric functions. Therefore it was appreciated by the public, and it spread throughout north India, even though astronomers like Sāmanta Candra Śekhara considered that the calculations were approximate (Ray, 1899). The transformation of aṁśa into śatāṁśa (multiples of hundred) in the Bhāsvatī was Śatānanda's greatest achievement. Professor Dikshit claims that this mathematical calculation was the initial form of the modern-day decimal system (Dahala, 2012; Vaidya, 1981). Commentaries of Śatānanda's work were made almost every century during the history of India, but in present-day research the Bhāsvatī is completely ignored by Indian mathematicians and astronomers. Thus, Śatānanda's pioneering work is little known, even in Odisha.

In this paper we explain the mathematical calculations where Śatānanda has introduced (i) centesimal fractions, and (ii) converted the aṁśa (degrees) into śatāṁśa (multiple of one hundred). Below, in Section 2 we provide biographical details of Śatānanda, while Section 3 contains comments and commentaries on the Bhāsvatī. In Section 4 we explain the mathematics that Śatānanda introduces in the Bhāsvatī, while Section 5 has concluding remarks, including future plans.

2 SATANANDA: A BIOGRAPHICAL SKETCH

Śatānanda was born in CE 1068 in Puruṣottamdhāma Puri (Jagannātha Puri), Odisha. From the history of Odisha we know that he may have been a courtier during the Keśari Dynasty (CE 474-1132). During that period, many constructive works were done, the kingdom was peaceful, and patronage was given to scientists and
architects. The state capital, Cuttack, was founded at this time as were the stone embankment along the Kāțhajoḍi River and the Ațharanalā bridge of Śrikhetra Purī (Acharya, 1879). Śatānanda's Bhāsvatī was the greatest literary achievement of the Keśari Dynasty.

Śatānanda wrote his text, which was a guideline to make Pañcāṅgas (calendars) for the benefit of performing rituals in the Jagannātha temple in Puri. Since Pañcāṅgas have an important role in Hindu society Śatānanda made accurate calculations of the positions and motions of the heavenly bodies. Hence, there was a saying in Varanasi (which was then the 'knowledge center' of India)-"ग्रहणे भास्वती धन्या" ("Bhāsvatī is the best book to predetermine eclipses"). It is also enlightening to know that the great Indian Hindi poet Mallik Muhammad Jayasi praised Bhāsvatī in his book (see Mishra, 1985):

> भास्वती औ व्याकरन पिङ्ञल पाठ पुराण।
> वेद मेद सोवात कहि जनु लागे हिय वान ॥

This shows Bhāsvatī's popularity in Indian society.

3 COMMENTARIES ON THE BHĀSVATI

There is a commentary on the Bhāsvatī written in Śaka 1417 by Anirudddha of Varanasi, and from this it would appear that there were many other commentaries that had been written about it earlier (see Vaidya, 1981: 110-112). Mādhava, a resident of Kanauja (Kānyakubja), wrote a commentary on the Bhāsvatī in Śaka 1442. Another commentary on this text was written in Śaka 1607 by Gañgādhara, while the author of a commentary written earlier, in Saka 1577, is not known. According to the Colebrooke, a commentary written by Balabhadra, who was born in the Jumula region of Nepal, was written in Saka 1330 (Vaidya, op cit.). From the Catalogue of Sanskrit books prepared by Aufrecht, the title of this commentary appears to be Bālabodhinī. This book was the first mathematics text book in Nepal (Jha et. al., 2006), since mathematical operations like additions, subtractions, multiplications and divisions are explained explicitly in the Bhāsvatī. According to Aufrecht's Catalogue there are also commentaries on the following texts: the Bhāsvatīkarana: Bhāsvatīkaraṇapaddhati; Tattvaprakāśikā by Rāmakṛ̣̣na, the Bhāsvatīcakraraśmyudāharaṇa by Rāmakṛ̣̣na, the Udāharaṇa by Śatānanda and the Udāharaṇa by Vṛndāvana. Similarly, there are commentaries by Achutabhațta, Gopāla, Cakravipradāsa, Rāmeśvara and Sadānanda, and a Prakrit commentary by Vanamāli. Very recently it was found that there was a commentary of this scripture with examples in the Odia language by Devīdāsa, composed in Śaka 1372, and this is now preserved in the Odisha State Museum in Bhubaneswar. This is a well-explained book on
mathematics and heavenly phenomena calculated in the Bhāsvatī. The equinox of 22 March in the year CE 79 in the Gregorian calendar is designated by day 1 of month Caitra of year 1 in the Saka era. Therefore, 78 years have to be added to the Śaka era to convert it to a Gregorian year (Rao, 2008: 108-114).

As might be expected, most of these commentators hailed from Northern India. When he wrote his masterly History of Indian Astronomy in 1896, Sankar Balakrishna Dikshit regretted that the Bhāsvatī was not known and that there were no references to it in any recently published research (Vaidya, 1981; cf. Dahala, 2012).

Dash (2007: 141-144) advises that copies of these commentaries are presently available in the following libraries:

- Alwar (Rajasthan)
- Asiatic Society, Bengal (Kolkata)
- India Office Library (London)
- Rajasthan Oriental Research Institute (Jodhpur)
- Saraswatibhavan Library (Banaras)
- Visveswarananda Institute (Hosiarpur)
- Bhandarkar Oriental Research Institute (Pune)

4 THE CONTENTS OF THE BHĀSVATI

The Bhāsvatī contains 128 verses in eight Adhikāras (chapters)—see Mishra, 1985). These are:

- Tīthyādidhruvādhikāra (Tithi Dhruva)
- Grāhadhruvādhikāra (Graha Dhruva)
- Pañcān்gaspașțādhikāra (Calculation of Calendar)
- Grahaspașțādhikāra (True place of Planets)
- Tripraśnādhikāra (Three problems: Time, Place and Direction)
- Chandragrahaṇādhikāra (Lunar Eclipse)
- Sūryagrahaṇādhikāra (Solar Eclipse)
- Parilekhādhikāra (Sketch or graphical presentations of eclipses)
In the first śloka of his scripture Śatānanda acknowledges the observational work of Varāhamihira which he has used in his calculations. He also claims that his calculations are as accurate as those in the Sūryasiddhānta even though the methods of calculation are completely different. The śloka is as follows:

अथ प्रवक्ष्ये मिहिरोपदेशाच्छ्रीसूर्य्यसिद्धान्तसमं समासात्।
Indian astronomers have differed in their opinions of the rates of precession during different periods with respect to the 'zero year'. The accumulated amount of precession starting from 'zero year' is called ayanām்śa.

There are different methods of calculating the

Table 1: Zero Ayanāṃśa Year and Annual Rate of Precession.

Siddhānta (treatises)	Annual rate of precession	Zero year of equinox in CE
Sūrya Siddhānta	54 "	499
Soma Siddhānta	54 "	499
Laghu-Vasiștha Siddhānta	54 ""	499
Grahalāghava	$60 "$	522
BRāsvat̄̄	$60 "$	528
Bṛhatsamihitā, Muñjāla (Quoted by Bhāskara-II)	$59.9 "$	505
Modern data	50.27	

Table 2: Sidereal Periods in Mean Solar Days.

Planets	European Astronomy	Sūrya Siddhānta	Siddhānta Śiromaṇi	Siddhānta Darpana	Bhāsvatī
Sun	365.25637	$365.25875+00238$	$365.25843+00206$	$365.25875+00238$	$365.25865+00228$
Moon	27.32166	$27.32167+00001$	$27.32114-00052$	$27.32167+00001$	$27.32160+00006$
Mars	686.9794	$686.9975+0181$	$686.9979+0185$	$686.9857+0063$	$686.9692-0102$
Mercury	87.9692	$87.9585+0107$	$87.9699+0007$	$87.9701+0009$	$87.9672-0020$
Jupiter	4332.5848	$4332.3206-2642$	$4332.2408-3440$	$4332.6278+0430$	$4332.3066-2782$
Venus	224.7007	$224.6985-0022$	$224.9679-0028$	$224.7023+0016$	$224.7025+0018$
Saturn	10759.2197	$10765.7730+6.5533$	$10765.8152+6.5955$	$10759.7605+5408$	$10759.7006+0599$

exact amount of ayanāṁśa:
(i) The Siddhāntas (treatises) furnish the rate for computing it, which is in principle the same as the method of finding the longitude of a star at any given date by applying the amount of precession to its longitude, at some other day.
(ii) Defining the initial point with the help of other data, such as the recorded longitudes of the stars, their present longitudes from the equinox point may be ascertained.
(iii) Knowing the exact year when the initial point was fixed, its present longitude, ayanāmiśa, may be calculated from the known rate of precession.
However it so happens that the results obtained by these three methods do not agree. Śatānanda has his own method of calculation, which was very simple but was considered to be approximate.

The Bhāsvatī has assumed Śaka 450 (CE 528) as the zero precession year and 1' as the rate of precession per year. However in his 61page introduction to the Siddhānta Darpaṇa Jogesh Chandra Roy claims that the zero precession year adopted in the Bhāsvatī is Śaka 427 (i.e. CE 505). He arrived at this number by making the reverse calculation. The calculation of ayanāmśa (precession) is explained in first śloka of the fifth chapter, Tripraśnādhikāra:

$$
\begin{aligned}
& \text { शकेन्द्रकालात् खशराब्धिहीनात् षष्ट्याप्तशेषे ह्ययनांशकाः } \\
& \text { स्युः। } \\
& \text { अहर्गणं तैर्युतमेव कुर्याद् बवेद्युवृत्दं द्युनिशोः प्रमाणे॥३॥ }
\end{aligned}
$$

The meaning of this śloka is: subtract 450 from the past years of the Śālivāhana (Śaka) and then divide it with 60. The quotient is the ayanāṁśa (precession). Add the ayanāmśa to the ahargaṇa to bring the proof of day night duration.

Here is an Example: If we will subtract 450 from Śaka 1374, it will be 924 . Dividing 924 by

60 becomes $15 \mid 24$. By adding this value to the ahargaṇa 27 the result becomes the sāyanadinagaṇa as $42 \mid 24$. The table for 'zero ayanāmंśa' year and the annual rate of precession adopted in the different scriptures are given in Table 1 above.

It can be seen from Table 2 that the sidereal periods of the Sun and the Moon calculated in the Bhāsvatī are almost the same as in the Sūrya Siddhānta and is notable improvement compared to the periods of the other planets, having regard to the comparatively slow motion of Jupiter and Saturn.

From the date he dedicated his Bhāsvatī, Śatānanda very cleverly introduced a new calendar for the benefit of society. Many calendars had been introduced by this time (such as the Śakābda, Gatakali, Hijirābda and Khrīṣtābda), and Śatānanda took the Śakābda and Gatakali Calendars as his reference calendar and initialized his Śāstrābda Calendar. He explained the method of converting the Śakābda and the Gatakali Calendars into his Śāstrābda Calendar in the first chapter (i.e. tithyādi-dhruvādhikāra) of the Bhāsvatī. The relevant śloka, and its exact translation, are given below:

गतकळि: प्रकारान्तरेण शास्ताब्दविधिश्च-
शाको नवाद्रीन्दुकृशानुयुक्तः कलेर्भवत्यब्दगणस्तु वृत्तः।
वियन्नभोलोचनवेदहीनः शास्ताब्दपिण्डः कथितः स एव॥?.
२॥
Gatakali can be ascertained by adding nava -9 adri -7 indu -1, kŕśānu -3, hence 3179 to Śakābda. Subtract viyat -0 nabhaḥ -0 locan -2 veda -4, hence 4200 from Gatakali, the result is known as Śāstrābdapiṇ̣a.
Here is an example. The above method has been implemented to convert the present year CE 2019 to the Śāstrābda Calendar. The present year CE 2019-78=1941Śakābda. Śakābda $1941+3179$ = 5120Gatakali. Gatakali $5120-4200=920$ Śāstrābda. Hence as per the record, the Bhāsvatī was written in CE 1099
and 920 years have passed. However, in this paper I have referred to the țikās made in Śaka 1374 (CE 1452) i.e. Śsasträbda 353. Therefore all the examples mentioned here are in Śāstrābda 353.

In his chapter tithyādi-dhruvādhikāra, Śatānanda gives the method of determining the solar days (tithi) and the longitudes (dhruva) of the nine planets: the Sun (Ravi), the Moon (soma), Mars (Marigala), Mercury (Budha), Venus (Śukra), Jupiter (Brhaspati), Saturn (Śani), and Rāhu and Ketu (the 'shadow planets').

Śatānanda starts his calculations from the Sun. In this same chapter (Chapter 1), in ślokas 4 and 5 he gives an empirical method for determining the longitude (dhrūvān̄ka) of Sun. The ślokas are shown below:

संवत्सरपालक-शुद्धिसूर्य्यधुवविधय :-
अथ प्रवक्ष्ये मिहिरोपदेशाच्छी़ीसूर्य्यसिद्धान्तसमं समासात्। शास्ताब्दपिण्डः स्वरशून्यदिग्द्नस्तानाग्रियुक्तोष्टशतैर्विभक्तः॥?. ४II
लब्धन्नगैः शेषितमङ্गयुक्तः सूर्यादिसंवत्सरपालकः स्यात्।
शेषं हरे प्रोज्इय पृथग् गजाशा लब्धं रवेरौदयिको ध्रुवः स्यात्॥?.५॥
Multiply svara (7) śūnya (0) dik (10) 1007 to Śāstrābda and add tāna (49) agni (3) 349 and divide by aștaśata (800) add anga (6) to the quotient and divide the quotient by naga (7). The remainder is the samivatsarapālaka of Sūrya. By subtracting it from the divisor Śuddhi comes. Keep this value in two places. Divide by 108 to the digit of one place. That is the dhruva (longitude) of Madhyama Sūrya. The quotient should be taken up to three places.
Mathematically this can be expressed as:
Śāstrābda $920 \times 1007=926440$
$926440+349=926789$.
$926789 \div 800=1158$, with a reminder of 389 (1)
$1158+6=1164 \div 7=166$, with a reminder of 2 = the second graha (planet)
from Sun, i.e. Mangala is the Samvatsara pālaka
From (1), 800 - reminder $389=411$ Śuddhi
Śuddhi $411 \div 108=3$ aṁśa, with a reminder of 87
$87 \times 60=5220 \div 108=48$ kalā, with a
reminder of 36
$36 \times 60=2160 \div 108=20$ vikalā
So the dhrūvānika (longitude) of the rising Sun on Caitra Śukla Pūrnimā (the Full Moon day of the month of Caitra) is $5|43| 20$ aṁśa, or 5 amंśa 43 kāla 20 vikāla. In the Bhāsvatī, Śatānanda first initialized the position of planets on Caitra Śukla Pürnimā and then calculated the rate of motion, position and time taken by the planets to complete one rotation in their orbits from the ahargana (the day count), unlike other siddhāntas, including the Süryasiddhānta, which take the starting point approximately from the date of the
beginning of civilization (i.e. 6 manu +7 Sandhi +27 mahāyuga + 3 yuga + present years elapsed from kaliyuga) for this purpose. Therefore, the number is huge, so there is every possibility of making mistakes. Despite these simplifications, the Bhāsvatī was still regarded as an authority for the calculation of eclipses.

4.1 The Implementation of Śatäḿśa

Ancient Indian astronomers believed that the 12 constellations and 27 Nakṣatras affected human life. They took 360 aṁśa approximately for one rotation, in 365 days, approximately 1° for one day, and specified 30 aṁśa for each constellation, and $40 / 3$ aṁśa for each star out of 12 constellations and 27 Nakṣatras respectively.

Śatānanda very cleverly multiplied $30 / 4$ by 360 amiśa to make it a multiple of one hundred without losing the generality: $360 \times 30 / 4=2700$ aṁśa. Hence each constellation has 225 aṁśa, and each nakṣatra has 100 aṁśa. He adopted 2700 am்śa for the calculation of the motions (Sphuțagati) of the Sun, the Moon, Rāhu and Ketu. However he adopted 1200 ambsa for the calculation of the motions of the other planets, Mars, Mercury, Venus Jupiter and Saturn, by taking each constellation as 100 aṁśa and 400/9 for each Nakșatra to avoid dealing with huge numbers.

In Chapter IV (Graha spașțādhikāra), Śatānanda introduces the concept of śatāmśa while determining the positions of the planets. As an example, in śloka 4.10 he explains the positions of Rāhu and Ketu as follows:

> राहुकेतुस्पष्टविधि:-
> अहर्गणं वेदहतं दशाप्तं ध्रुवार्द्धयुक्तं भवतीह पातः।
> खखागनेत्रान्तरितो मुं स्याच्चक्राद्द्धयुक्तं स्फुट राहुपुच्छः॥४. १०॥
> (Multiply dinagana by veda -4 and then divide by daśa 10. Add the quotient to the last given dhruva (longitude). Subtract it from ख - 0 ख -0 अग -7 नेत्र -2 , hence 2700 . That is Rāhu. Again by dividing the given number by 225 the rāśi (constellation) of Rāhu will come.
Then by adding cakrārdha 1350 to Rāhu, Ketu comes. And by dividing the position number of Ketu by 225, rāśi (constellation) of ketu can be determined.

Mathematically

Ahargaṇa $27 \times 4=108 \div 10=10|48| 0$
The longitude of rāhu (pāta dhrūvānika) is calculated from the procedure in Tithyādidhruvādhikāra for the year CE 2019 (Śāstrābda 920) $4091|01 \div 2=2045| 01+10|48| 0=2056 \mid 31$ 2700-2056|31 = Rāhu Sphuṭa 643|42
Rāhu $643 \mid 42 \div 100=6$ with a reminder of $43 \mid 42$ This shows that on ahargaṇa 27 Rāhu lies in rāśi Mithuna (Gemini) and Nakṣatra Punarbasu.

Since the motions of Rāhu and Ketu have to be calculated opposite to the motions of the planets,
the cakrārdha $1350+$ Rāhu 643|42 = Ketu 1993|42
Here Śatānanda took the cakrārdha (half rotation) as 1350, as one cakra (rotation) is 2700 aṁśa.
It was known that Rāhu and Ketu points are opposite to each other (180° apart) in a circle and when the Moon is near the Rāhu point then there is a chance of getting lunar eclipse and when is on Ketu point Solar eclipse occurs (see Figure 1).
Ketu 1993|42 $\div 100=19$ with reminder $93 \mid 42$
This shows that Ketu lies on rāśi Dhanu (Sagittarius) and the Mula Nakșatra.

Implementation of Śatām்śa had a significant role in predetermining solar and lunar eclipses. This was because (1) 2700 aṁśa is a very big number in comparison to 360 aṁśa, and (2) assigning 100 amंśato to each nakṣatra or constellation could avoid many errors while taking fractions.

Figure 1: A schematic diagram (not to scale) showing the relative positions of the Sun, the Earth and the Moon for the calculations of the times of solar and lunar eclipses (diagram: Sudhira Panda).
4.2 Calculating Time According to the Bhāsvatī
In this section we want to show the simplified method introduced in the Bhāsvatī to calculate time from gnomonic shadows.

As an example: calculation of time on 15 June of this year (2019), when the shadow of the 12 unit gnomon becomes 15 units.
Answer: Here the equinoxial day is 23 March.
So the number of days elapsed $=8$ days of March +30 days of April +31 days of May +15 days of June $=84$ days
or 30 days Aries +30 days Taurus +24 days Gemini = 84 days
Now to calculate carārdhalitā
for the month of Aries $=30+30 / 2=45$
for the month of Taurus $=30+30 / 6=35$
for the month of Gemini $=24 / 2=12$
So carārdhalitā $=45+35+12=92=$ danda1|32 lita on the day required
Dinārdha $=15+1|32=16| 32$ daṇ̣̣a
Now, to calculate madhya prabhā (which is the mid-day Sun's rays)
Carārdhalitā $92 \times 6=552 / 10=55 \mid 12$
$552-55|12=(496 \mid 48) / 10=49| 41$
On 15 June the Sun is in the northern hemisphere. So the above number should be kept as it is.
Now 49|41 - akṣa 44|43 = 4|58 \rightarrow madhya prabhā
Here the gnomonic shadow or isțachāyā =15|0
angula $\times 10=150+100=250$
250 - madhya prabhā $4|58=245| 02=245 \times 60$
+2 = $14702 \rightarrow$ śañku
nowdinārdha $16 \mid 32=16 \times 60+32=992$
$992 \times 100=99200$
99200/14702 = daṇ̣̣a 6|45 litā
Now we have to convert this to modern time.
daṇ̣̣a $6 \mid 45$ litā ~2 hours and 42 minutes
We know that in Indian astronomy the day starts at sunrise.
Dinārdha on 15 June is 16|32 ~6 hours and 22 minutes $=6^{h} 22^{m}$
Mid-day at 87° longitude is at $12^{\mathrm{h}}-14^{\mathrm{m}}=11^{\mathrm{h}}$ $46{ }^{\mathrm{m}}$
Therefore, $11^{h} 46^{m}-6^{h} 22^{m}=5^{h} 24^{m}$, which is the time of sunrise.
$5^{h} 24^{m}+2^{h} 42^{m}=8^{h} 06^{m}$ is the required time when the shadow of 12 aṅgula śañku becomes 15 añgula.

4.2.1 A Physical Explanation to all the Terms

and the Methods Adopted
To know time from the gnomonic shadow there are two terms that are involved in the calculation:
(1) Madhyaprabha, and
(2) Dinārdhadaṇ̣̣a

Then, for the calculation of Madyaprabha and Dinārdhadaṇ̣̦a we need to calculate carārdha, nāḍi and nata. Nata has two parts, saumyanata and yamyanata.

The first step of this method is to decide whether the Sun is in the northern or southern sky. If the Sun is in the north then akșa has to be subtracted (otherwise it would have to be added). This is because when he wrote the Bhāsvatī, Śatānanda had made all his calculations with reference to Puri, Odisha, which is in the northern hemisphere. Therefore, when the Sun travels from the northern to the southern hemisphere it has to pass the equator, the zero equinoxial gnomonic shadow line. Hence, to con-
sider the gnomonic shadow when the Sun is in southern hemisphere the term akṣa has to be added. According to the Bhāsvatī, the Sun lies in the northern hemisphere, from the vernal equinox to the autumnal equinox, for 187 days (the modern value is 186 days), while it is in the southern hemisphere, from the autumnal equinox to the vernal, for 178 days (the modern value is 179 days).

In the second step we have to calculate carārdha (spreading). As we know, the duration of the day and the night changes every day and is not completely uniform. Therefore to take care of the changes in a day, the duration carārdha has to be calculated. This is an empirical method and Śatānanda claims that the method is completely his own and that he did not copy from any previous texts. From Madhyaprabhā the midday gnomonic shadow for the day concerned can be derived. From the proportion of Madyaprabhā and Iștachāyā the time can be calculated.

Dinārdhadanda can be calculated by adding carārdhalitā to, or subtracting it from, the dinārdhadaṇ̣̣a on Mahāviṣuvasañkrānti (i.e. 15 daṇ̣̣a, depending on whether Sun is in the northern or the southern hemisphere). Table 3 lists the midday gnomonic shadow on all 12 sañkrāntis, along with modern data.

The length of the shadow of the gnomon should be recorded at the moment at which the time has been calculated. This is known as ișțachāyā.
ișțachāyā × 10 + 100 - Madhya prabhā
= Śañku
(Note that this Śanku is different from the gnomon itself.)
Keep dinārdha (half day duration) of that day. Convert daṇ̣̦a and litā into litā by multiplying 60 with daṇ̣̣a and then adding litā. Now multiply litā pind with 100 and then divide it by the value of Śanku in equation (2). The result is the iștachāyākāla (time). This time is of two types, Gatakāla: from morning up to noon, and Eșvakāla: from noon through to the evening.

To know madhya prabhā the carārdhalitā has to be calculated. Multiply 6 with carārdhalitā. Keep the result in two places. Subtract one tenth of it from the number in the second place. If the Sun is in the northern hemisphere then keep the number as it is, otherwise add one third of the number to it. Again divide the number by 10. If the Sun is in southern hemisphere then akṣa has to be added.

Śatānanda claimed in the Bhāsvatī that this method of calculation of Carārdha outlined there was entirely his own. According to him, if the Sun is in Aries (Meșa), then the day count + the half of the day count is the carārdhalitā. If the Sun is in Tarus (Vrṣa) then Carārdha will be the carārdhalitā of Meșa + number of days elapsed from Vrṣa + one sixth of number of days elapsed from Vrṣa. Again, if the Sun is in Gemini (Mithuna), the half of the days elapsed from the month of Mithuna have to be added to the carärdha of the month Vriṣa. The result is the carārdhalitā for the month of Gemini (Mithuna). The carārdhalitā for the months of Karkața to Kanyā will decrease in the similar manner, and on Kanyā sañkrānti it will be zero. A similar calculation has to be followed if the Sun is in the southern hemisphere.

The half day duration, dinārdha, on Mahāvișuvasañkrānti is 15 daṇ̣̣a. Calculate the carārdhalitā for the day concerned, add the carārdhalitā to 15 if the Sun is in the northern hemisphere and subtract it if the Sun is in southern hemisphere. The result is the required dinārdha (half day duration) for the day concerned.

Since Śatānanda made all his calculations with respect to ahargana, in order to make all of my calculations in same reference frame I adopted the data provided by NASA. The old data table by NASA is given below, where 21 March has been taken as Mahāvisuva Sañkrānti or Meṣa sañkrānti. In the Bhāsvatī, Śatānanda mentions that the Sun lies in the northern hemisphere for 187 days and in the southern hemisphere for 178 days, which is the same as in the NASA table.

Table 3: The mid-day gnomonic shadow on all 12 Sankrānti.

Saṅkrānti Number	Declination of the Sun (δ) in degrees	Right ascension of the Sun (λ) in degrees	Midday gnomonic shadow from the modern method	Midday gnomonic shadow from themethod in the Bhāsvat̄	Difference and Error (\%)
1	0.0	0.0	4.3676	4.45	$0.0824=0.69 \%$
2	11.5008	30.0	1.7933	1.9788	$0.1855=1.55 \%$
3	20.2017	60.0	0.04225	0.098	$0.0557=0.46 \%$
4	23.5	90.0	-0.7339	-0.658	$0.0759=0.63 \%$
5	20.2017	120.0	-0.04225	-0.037	$0.0795=0.66 \%$
6	11.5003	150.0	1.7933	1.739	$-0.543=0.45 \%$
7	0.0	180.0	4.3676	4.45	$0.082=0.69 \%$
8	-11.5004	210.0	7.3537	7.496	$0.1423=1.19 \%$
9	-20.2017	-23.5	240.0	10.1414	10.232

5 CONCLUDING REMARKS

In this paper, the contribution of Śatānanda to the world of mathematics and astronomy has been discussed. Some of the ślokas from his text Bhāsvatī has been translated to explain his achievements. It was necessary in order to prepare an accurate almanac for Hindu society, and mostly for the benefit of the Jagannātha temple at Puruṣottamadhāma Purī. For this purpose he applied the observational data of Varāhamihira and took CE 450 as the year when the text of the Pañcasiddhāntikā of Varāhamihira was written, as zero ayanām்śa' year. Śatānanda started Śāstrābda from the year he dedicated the Bhāsvatī to society, i.e. CE 7 April 1099 (Mishra 1985). Correspondingly, it was the Pournima (Full Moon day) of the first lunar month Caitra of the gata-kali (elapsed kali era) year 4200. All calculations in the Bhāsvatī were in Śastrābda, and he had given rules to convert Śāstrābda to Śakābda and vice versa. Śatānanda has taken the latitude and longitude of Puri in Odisha as his reference point. Maybe it was easy for him to recheck his methods from observations made at his native place.

The most interesting thing found in the Bhāsvatī is that Śatānanda could calculate the position and rate of motion of heavenly bodies quite accurately without using trigonometric functions. Though some ancient astronomers rejected the methodology by saying that was an approximate method, it is interesting to see that this 'approximate method' could provide exact solutions when predetermining eclipses. Use of Śatāṁśa (a centesimal system) in the procedure and making a back transform was quite a modern idea that was adopted by Śatānanda. A strong claim exists that the conversion of the sexagecimal system to the centesimal system was the first step that led mathematicians towards the introduction of the decimal system in mathematical calculations (Vaidya, 1981: 110-112). In this context, it is necessary to study the physical and mathematical interpretation of all 128 ślokas in the Bhāsvatī.

A detail study is now in progress to establish the relationship between the method outlined in the Bhāsvatī and the modern European method of predetermining an eclipse.

6 ACKNOWLEDGEMENTS

I am very grateful to Professor Balachandra Rao for helping with the revision of this paper.

7 REFERENCES

Acharya, P., 1879. History of Odisha. Odisha state Archives.
Dahala, A.L., 2012. Bhāratīya Jyotiṣaśāstrasya itihāsa. Varanasi, Chowkhamba Surabharati Prakashana (in Sanskrit).

Dash, S., 2007. New Catalogus Catalogorum ... Volume XVII. Madras, University of Madras.
Jha K., Adhikary P.R., and Pani S.R., 2006. A history of mathematical science in Nepal. Kathmandu University Journal of Science and Technology, 11(1), 1-5.
Mishra, A.R., 1985. Śrīmad Śatānandaviracita Bhāsvatī. Second Edition. Varanasi, Jaday Bhawan (Kashi Sanskrit Series-46, Chowkhamba Sanskrit Sansthan).
Ray, J.C., 1899. An Introduction to Siddhāntadarpaṇa of Mahāmohopādhyāya Sāmanta Candra Śekhara Simiha Haricandana Mahāpātra. Calcutta, Girish Bidyaratna Press.
Rao, S. Balachandra, and Venugopal P., 2008. Indian Astronomy-Concept and Procedure. Bengaluru, Gandhi Centre of Science and Human Values.
Rao, S. Balachandra, 2016. Eclipse in Indian Astronomy. Bengaluru, M.P. Birla Institute of Management.
Vaidya R.V., 1981. English Translation of Bharatiya Jyotish Sastra by Sankar Balakrushna Dikshit. Part II. Delhi, Government of India Press.

8 APPENDIX A: THE METHOD OF CALCULATING THE SIDEREAL PERIOD OF MOON
Step 1. Multiply 90 by ahargaṇa and add Candra Dhruva with it. Divide the result by 2457.
Step 2. Multiply 100 by ahargaṇa and add Kendra dhruva to it. Divide the result by 2756.
Step 3. Divide ahargaṇa by 120 and add the remainder of Step 1. The carārdha of the respective month has to be subtracted from the result. The carārdha for each month is given in Table 4.
Step 4. Divide ahargana by 50 and add the remainder of Step 2. Then divide the result by 100.
Step 5. From the quotient the corresponding Khanḍa and Anukhaṇ̣da (khaṇda +1) have to taken from Table 5 below. Subtract Khaṇḍa from Anukhanda, and the result is chandra bhoga. The remainder from Step 4 has to be multiplied by chandra bhoga. Divide the result by 100. The result has to be added to Khanḍa and the result of Step 3. The result is candra sphuța.

In the similar manner candra sphutta for the next day (ahargana) has to be calculated. The positional difference of the day is called candra bhukti (the Moon's diurnal motion). This motion is not uniform. Therefore for the sidereal calculation I kept on increasing the ahargana until the Moon comes to the same position (candra sphuṭa).

Table 4: The Carardha value that has to be subtracted in different months

Name of Sidereal Month	Carārdha	Name of Sidereal Month
Aries	0	Pisces
Taurus	1	Aquarius
Gemini	2	Capricorn
Cancer	2	Sagittarius
Leo	1	Scorpio
Virgo	0	Libra

Table 5: Candra Khaṇ̣da-difference (antara) - Bhuktibodhaka Chakra

0	1	2	3	4	5	6	7	8	Number
0	0	1	3	6	10	16	24	35	Khanḍa
0	1	2	3	4	6	8	11	11	Difference
9	10	11	12	13	14	15	15	17	Number
46	60	75	91	108	1	143	159	175	Khanḍa
14	15	16	17	18	17	16	16	15	Difference
18	19	20	21	22	23	24	25	26	Number
190	202	213	222	230	235	239	241	242	Khaṇ̣a
12	11	9	8	5	4	2	1	1	Difference
27	28	Number							
243	243	Khaṇo a							
0	0	Difference							

9 APPENDIX 2: THE METHOD OF CALCULATING THE MID-DAY GNOMONIC SHADOW IN DIFFERENT SANKRĀNTIS

The NASA table for different Sañkrāntis:

Accorang to the Bnasvatr, the paraprabna(equinoxial mid-day gnomonic shadow) is $4 \mid 27=4.45$ This is little higher than that of modern data (i.e. $4.37+0.08$)

1. On 21 March the Sun lies on the equator. So we take the Sun's position at 0°. Aries.

So the gnomonic shadow will be 4.45.
2. On 21 April, Taurus $=30^{\circ}=$ ahargaṇa $=31=30+1$
carārdhalitā $=45+1+1 / 6=46.17$
$46.17 \times 6=277.02-27.70=249.32 / 10=24.932$
madhya prabhā $=44.72-24.932=19.788$
iștachāyā = 19.788/10 = 1.9788
3. On 22 May, Gemini: $60^{\circ}=$ ahargaṇa $62=30+30+2$
carārdhalitā $=45+35+1=81$
$81 \times 6=486-486 / 10=437.4 / 10=43.74$
madhya prabhā $=44.72-43.74=0.98$
iștachāyā $=0.98 / 10=0.098$
4. On 22 June, Cancer: $90^{\circ}=$ ahargana $93=30+30+33$
carārdhalitā $=45+35+33 / 2=96.5$
$96.5 \times 6=579-57.9=521.1 / 10=52.11$
madhya prabhā $=44.72-52.11=-7.39$
iștachāyā $=-7.39 / 10=-0.739$
5. On 23 July, Leo: $120^{\circ}=$ ahargaṇa 124
(In this case there is little change in procedure. It has been mentioned that the Sun lies 187 days in the Northern Hemisphere and 178 days in the Southern Hemisphere. So when ahargaṇa exceeds half of the days in a hemisphere then we have to take the smaller part for the carārdhalitā calculation. i.e. 187-124 $=63$. So we have to calculate the carārdhalitā of 63 ahargana.)
$63=30+30+3$
carārdhalitā $=45+35+3 / 2=81.5$
$81.5 \times 6=501-50.1=450.9 / 10=45.09$
Madhya prabhā $=44.72-45.09=-0.37$
iștachāyā $=-0.37 / 10=-0.037$
6. On 22 August, Virgo: $150^{\circ}=$ ahargaṇa $154=187-154=33=30+3$
carārdhalitā $=45+3+3 / 6=48.5$
$48.5 \times 6=291-29.1=261.9 / 10=26.19$
madhya prabhā $=44.72-26.19=18.53$
istachaya $=18.53 / 10=1.853$
7. On 24 September, Libra: $180^{\circ}=$ ahargaṇa 187

Shadow length $=4.45$
8. On 22 October, Scorpio: $210^{\circ}=$ ahargana 215

215-187 = (Southern Hemisphere) $=28$
carārdhalitā $=28+14=42$
(there is little change in procedure for the Southern Hemisphere)
$42 \times 6=252-25.2=226.8+226.8 / 3=302.4 / 10=30.24$
madhya prabhā $=44.72+30.24=74.96$
iștachāyā = 74.96/10 = 7.496
9. On 23 November, Sagittarius: $240^{\circ}=$ ahargana 247
$247-187=60$
carārdhalitā $=45+35=80$
$80 \times 6=480-48=432+432 / 3=576 / 10=57.6$
madhya prabhā $=44.72+57.6=102.32$
iștachāyā = 102.32/10 = 10.232
10. On 23 December, Capricorn: $270^{\circ}=$ ahargana 277
$277-187=90$
Southern Hemisphere 178-90=88
We have to calculate carārdhalitā of the smaller part.
So carārdhalitā of $88=45+35+14=94$
$94 \times 6=564-56.4=507.6+507.6 / 3=676.8 / 10=67.68$
madhya prabhā $=44.72+67.68=112.4$
ișțachāyā = 112.4/10 = 11.24
11. On 21 January, Aquarius: $300^{\circ}=$ ahargaṇa 306
$306-187=119$
$178-119=59$
$59=45+29+29 / 6=78.83$
$78.83 \times 6=473-47.3=425.7+425.7 / 3=567.6 / 10=56.76$
madhya prabhā $=44.72+56.76=101.48$
iștachāyā = 101.48/10 = 10.148
12. On 20 February, Pisces: $330^{\circ}=$ ahargaṇa 336
$336-187=149$
$178-149=29$
$29+29 / 2=43.5$
$43.5 \times 6=261-26.1=234.9+234.9 / 3=312.3 / 10=31.23$
madhya prabhā $=44.72+31.23=75.95$
iștachāyā $=75.95 / 10=7.595$

Dr Sudhira Panda is a former Lecturer in the Department of Mathematics at Ravenshaw University, Cuttack, India. She did her PhD at the University of Hong Kong. She has been doing research on optoelectronic device modeling, funded by the Department of Science and Tech-
nology and the Council of Scientific and Industrial Research, India. During the last five years she has been researching aspects of ancient Indian astronomy.

