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Abstract: The eleventh century Indian DVWURQRPHU� DQG� PDWKHPDWLFLDQ� �DW�QDQG�F�U\D wrote the 
%K�VYDW¯ on CE 7 April 1099.  Correspondingly this was the Pournima (Full Moon day) of the first lunar 
month Caitra of the gata-kali (elapsed kali era) year 4200.  This text was a significant contribution to the 
world of astronomy and mathematics.  �DW�QDQGD�KDd adopted the centesimal system for the calculation 
of the positions and motions of the heavenly bodies, which is similar to the present-day decimal system.  
His treatise received recognition in the text of the Karaüa (handbook) grantha.  Commentaries of this 
work were made by different people at different times in history.   
 

Although the %K�VYDW¯ was reissued about once every century and was well known throughout India, 
and even abroad, at present it is completely lost and no references to it are available in current works.  
The main aim of this paper is to outline its contents and bring these to the notice of a wider audience, and 
to highlight WKH�JHQLXV�RI��DW�QDQGD�DQG�KLV�FRQWULEXWLRQ�WR�WKH�ZRUOG�RI�DVWURQRP\�DQG�PDWKHPDWLFV� 
 

Keywords: Decimal System, Centesimal System, the %K�VYDW¯, !¯N�V (commentaries), �DW�ö�D, 
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1  INTRODUCTION 
 

The history of development of mathematics in 
India is as old as the Vedas.  From prehistoric 
times, mathematics began with the rudiments of 
metrology and computation, of which some 
fragmentary evidence has survived.  The sacred 
literature of the Vedic Hindus²the SaöK¯W�V, 
the Kalpas and the 9HG�úgas²contains enough 
information to prove the mathematical abilities of 
those pioneers who developed this class of lit-
erature.  Those pioneers, mostly astronomers, 
used mathematics as an instrument for the cal-
culation of the positions of the stars and the 
planets.  Rather, one can say that such calcula-
tions (astronomy) was urged by the develop-
ment of mathematics (i.e. addition, subtraction, 
multiplication and division, and also fractions).  
The division of days, months and the seasons 
inspired the idea of fractions. 
 

In all ancient calculations the astronomers 
assigned 360 aö�D (degrees) to a cycle, since 
360 is the smallest number divisible by the 
integers 1 to 10, excluding 7.  This trend is still 
implemented in present-day calculations.  How-
ever, late in the eleventh century an astronomer 
named �DW�QDQGD�was born in Odisha, and he 
was successful in developing the mathematical 
research that was ongoing at this time.  For con-
venience, he converted all cyclic calculations 
into multiples of one hundred.  He used 1200 
aö�a while calculating the positions and motions 
of the planets with respect to the 12 Indian 
constellations, and he used 2700 aö�D while 
calculating the positions and motions of the Sun 
and the Moon with respect to the 27 Nak�atras.  
 

�DW�QDQGD¶s %K�VYDW  ̄introduces very simple 

methods to calculate celestial parameters, with-
out using trigonometric functions.  Therefore it 
was appreciated by the public, and it spread 
throughout north India, even though astronomers 
OLNH� 6�PDQWD� &DQGUD� �HNKDUD� FRQVLGHUHG� that 
the calculations were approximate (Ray, 1899).  
The transformation of aö�D into �DW�ö�D (mult-
iples of hundred) in the %K�VYDW¯ was �DW�-
nanda¶s greatest achievement.  Professor Dikshit 
claims that this mathematical calculation was 
the initial form of the modern-day decimal syst-
em (Dahala, 2012; Vaidya, 1981).  Comment-
aries RI� �DW�QDQGD¶V work were made almost 
every century during the history of India, but in 
present-day research the %K�VYDt¯ is completely 
ignored by Indian mathematicians and astrono-
mers.  Thus, �DW�QDQGD¶s pioneering work is little 
known, even in Odisha. 

 

In this paper we explain the mathematical 
FDOFXODWLRQV�ZKHUH��DW�QDQGD�KDs introduced (i) 
centesimal fractions, and (ii) converted the 
aö�D (degrees) into �DW�ö�D (multiple of one 
hundred).  Below, in Section 2 we provide bio-
graphical details of �DW�QDQGD, while Section 3 
contains comments and commentaries on the 
%K�VYDW¯.  In Section 4 we explain the mathe-
matics that �DW�QDQGD� LQWURGXFHs in the %K�V-
YDW¯, while Section 5 has concluding remarks, 
including future plans. 
 
����$7�1$1'$: A BIOGRAPHICAL SKETCH 
 

�DW�QDQGD was born in CE 1068 in Puruâottam-
dh�PD� 3XUL� �-DJDQQ�WKD� 3XUL�, Odisha.  From 
the history of Odisha we know that he may have 
been a courtier during the .H�DUL� '\QDVWy (CE 
474Å1132).  During that period, many construct-
ive works were done, the kingdom was peace-
ful, and patronage was given to scientists and 
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architects.  The state capital, Cuttack, was found-
ed at this time as were the stone embankment 
along the .�ìhajo�i River and the AìKDUDQDO� 
EULGJH� RI��ULNKHWUD� 3XU¯� �$FKDU\D�� �879).  �DW- 
�QDQGD¶V %K�VYDW¯ was the greatest literary 
achievement of the .H�DUL�Dynasty. 
 

�DW�QDQGa wrote his text, which was a guide-
line to make 3DxF�úgas (calendars) for the bene-
fit of performing rituals in the -DJDQQ�WKD�WHPSOH 
in Puri.  Since 3DxF�úgas have an important role 
in Hindu society �DW�QDQGa made accurate calc-
ulations of the positions and motions of the heav- 
enly bodies.  Hence, there was a saying in Var-
anasi (which was then WKH�µknowledge center¶ of 
India)²³d��8 �-â�1 
J-´ (³%K�VYDW¯ is the best 
book to predetermine HFOLSVHV´).  It is also en-
lightening to know that the great Indian Hindi 
poet Mallik Muhammad Jayasi praised %K�VYDW¯ 
in his book (see Mishra, 1985): 
 

�-â�1 õ ©-ø�� .À� -� 2�-�a 
�8	 �8	 �<�-� ø.� ÿ�2 �-ú8 .�� �-��|| 

 

This shows %K�VYDW¯¶s popularity in Indian so-
ciety. 
 
3  COMMENTARIES ON THE %+�69$7® 
 

There is a commentary on the %K�VYDW¯ written 
in �DND 1417 by Anirudddha of Varanasi, and 
from this it would appear that there were many 
other commentaries that had been written about 
it earlier (see Vaidya, 1981: 110Å112).  0�G-
hava, D�UHVLGHQW�RI�.DQDXMD��.�Q\DNXEMD�, wrote 
a commentary on the %K�VYDW¯ in �DND 1442.  
Another commentary on this text was written in 
�DND 1607 by GaÄJ�GKDUD, while the author of 
a commentary written earlier, in �DND 1577, is 
not known.  According to the Colebrooke, a 
commentary written by Balabhadra, who was 
born in the Jumula region of Nepal, was written 
in �DND 1330 (Vaidya, op cit.).  From the Cat-
alogue of Sanskrit books prepared by Aufrecht, 
the title of this commentary appears to be %�OD-
ERGKLQ¯��  This book was the first mathematics 
text book in Nepal (Jha et. al., 2006), since math-
ematical operations like additions, subtractions, 
multiplications and divisions are explained ex-
plicitly in the %K�VYDW¯.  $FFRUGLQJ� WR�$XIUHFKW¶V�
Catalogue there are also commentaries on the 
following texts: the %K�VYDW¯karaüa: %K�VYDW¯kar-
aüapaddhati; 7DWWYDSUDN��LN� by 5�PDNÚâÆa, the 
%K�VYDW¯FDNUDUD�P\XG�KDUDüa by 5�PDNÚâÆa, 
the 8G�KDUDüa E\� �DW�Qanda and the 8G�KD-
raüa by VÚQG�YDQD��  Similarly, there are comm-
entaries by AchutabhaììD�� *RS�OD�� &DNUDYLSUD-
G�VD��5�PH�Yara and 6DG�QDQGD, and a Prakrit 
FRPPHQWDU\�E\�9DQDP�OL�� �9HU\� UHFHQWO\� LW�was 
found that there was a commentary of this 
scripture with examples in the Odia language by 
'HY¯G�VD, composed in �DND 1372, and this is 
now preserved in the Odisha State Museum in 
Bhubaneswar.  This is a well-explained book on 

mathematics and heavenly phenomena calculat-
ed in the %K�VYDW¯.  The equinox of 22 March in 
the year CE 79 in the Gregorian calendar is 
designated by day 1 of month Caitra of year 1 in 
the �DND era.  Therefore, 78 years have to be 
added to the �DND�era to convert it to a Greg-
orian year (Rao, 2008: 108Å114). 
 

As might be expected, most of these com-
mentators hailed from Northern India.  When   
he wrote his masterly History of Indian Astron-
omy in 1896, Sankar Balakrishna Dikshit re-
gretted that the %K�VYDW¯ was not known and 
that there were no references to it in any 
recently published research (Vaidya, 1981; cf. 
Dahala, 2012). 
 

Dash (2007: ���Å�����DGYLVHV�WKDW�Fopies of 
these commentaries are presently available in 
the following libraries: 

 

x Alwar (Rajasthan) 
x Asiatic Society, Bengal (Kolkata) 
x India Office Library (London) 
x Rajasthan Oriental Research Institute 

(Jodhpur) 
x Saraswatibhavan Library (Banaras) 
x Visveswarananda Institute (Hosiarpur) 
x Bhandarkar Oriental Research Institute 

(Pune) 
 
4  THE CONTENTS OF THE %+�69$7® 
 

The %K�VYDW¯ contains 128 verses in eight 
$GKLN�UDs (chapters)²see Mishra, 1985).  These 
are: 
 

x 7¯WK\�GLGKUXY�GKLN�UD�(Tithi Dhruva)  
x *U�KDGKUXY�GKLN�UD�(Graha Dhruva) 
x 3DxF�úgaspa�"�GKLN�UD�(Calculation of 

Calendar)  
x Grahaspa�"�GKLN�UD�(True place of Planets) 
x 7ULSUD�Q�GKLN�UD�(Three problems: Time, 

Place and Direction) 
x Chandragrahaü�GKLN�UD�(Lunar Eclipse) 
x 6ÌU\DJUDKDü�GKLN�UD�(Solar Eclipse) 
x 3DULOHNK�GKLN�UD�(Sketch or graphical 

presentations of eclipses) 
 

In the first �ORND of his scripture �DW�QDQGD�
acknowledges the observational work of 9DU�-
hamihira which he has used in his calculations.  
He also claims that his calculations are as 
accurate as those in the 6ÌU\DVLGGK�QWD even 
though the methods of calculation are com-
pletely different.  The �loka is as follows: 
 

æ� n��8 .�.��<	8�-ÅL 1�3�J.� -6��C ��-�-�@a 
 

Indian astronomers have differed in their opin-
ions of the rates of precession during different 
SHULRGV�ZLWK�UHVSHFW�WR�WKH�µ]HUR�\HDU¶��  The ac-
cumulated amount of precession starting from 
µ]HUR�\HDU¶�LV�FDOOHG�D\DQ�ö�D. 
 

There are different methods of calculating the 
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Table 1: Zero $\DQ�ø�D Year and Annual Rate of Precession. 
 

6LGGK�QWD��treatises) Annual rate of precession Zero year of equinox in CE 
6ÌU\D�6LGGK�QWD ��´ 499 
Soma 6LGGK�QWD ��´ 499 

Laghu-Vasi�"ha 6LGGK�QWD ��´ 499 
*UDKDO�JKDYD ��´ 522 

%K�VYDW¯ 6�´ 528 
B�hatsaöKLW���0XxM�OD��4XRWHG�E\�%K�VNDUD-II) ����´ 505 

Modern data 50.27  

 
Table 2: Sidereal Periods in Mean Solar Days. 

 

Planets European 
Astronomy 

6ÌU\D�6LGGK�QWD 6LGGK�QWD��LURPDüi 6LGGK�QWD�'DUSDQD %K�VYDW¯ 

Sun 365.25637 365.25875+00238 365.25843+00206 365.25875+00238 365.25865+00228 
Moon 27.32166 27.32167+00001 27.32114Å00052 27.32167+00001 27.32160+00006 
Mars 686.9794 686.9975+0181 686.9979+0185 686.9857+0063 686.9692Å0102 

Mercury 87.9692 87.9585+0107 87.9699+0007 87.9701+0009 87.9672Å0020 
Jupiter 4332.5848 4332.3206Å2642 4332.2408Å3440 4332.6278+0430 4332.3066Å2782 
Venus 224.7007 224.6985Å0022 224.9679Å0028 224.7023+0016 224.7025+0018 
Saturn 10759.2197 10765.7730+6.5533 10765.8152+6.5955 10759.7605+5408 10759.7006+0599 

 
exact amount of ayan�ö�D: 
 

(i) The 6LGGK�QWDV (treatises) furnish the rate for 
computing it, which is in principle the same as 
the method of finding the longitude of a star at 
any given date by applying the amount of preces-
sion to its longitude, at some other day.  
 

(ii) Defining the initial point with the help of other 
data, such as the recorded longitudes of the 
stars, their present longitudes from the equinox 
point may be ascertained.  
 

(iii) Knowing the exact year when the initial point 
was fixed, its present longitude, ayan�ö�D, may 
be calculated from the known rate of preces-
sion.  
 

However it so happens that the results obtained 
by these three methods do not agree.  �DW�-
nanda has his own method of calculation, which 
was very simple but was considered to be ap-
proximate. 
 

The %K�VYDW¯ has assumed �DND 450 (CE 
528) as the zero precession year and 1� as the 
rate of precession per year.  However in his 61-
page introduction to the 6LGGK�QWD�Darpaüa Jog-
esh Chandra Roy claims that the zero preces-
sion year adopted in the %K�VYDW¯ is �DND 427 
(i.e. CE 505).  He arrived at this number by 
making the reverse calculation.  The calculation 
of ayan�ö�D (precession) is explained in first 
�ORND of the fifth chapter, 7ULSUD�Q�GKLN�UD: 
 

�ø8 >ø-�-�@ ù��-0i�1�-�@ �=è-Q�8�8 è��-C�ø-D 
ß2Da 
æ�úJ�C �9�2J��8� ø2 �-J	@  ��8�2�4=C  	@ �2.��<D n�-�8bXb 

 

The meaning of this �ORND� is: subtract 450 from 
the past years of the ��OLY�KDQD (�DND) and 
then divide it with 60.  The quotient is the 
ayan�ö�D (precession).  Add the ayan�ö�D to 
the ahargaüa to bring the proof of day night 
duration. 
 

Here is an Example:  If we will subtract 450 
from �DNa 1374, it will be 924.  Dividing 924 by 

60 becomes 15|24.  By adding this value to the 
ahargaüa 27 the result becomes the V�\DQD-
dinagaüa as 42|24.  7KH�WDEOH�IRU�µ]HUR�ayan�ö-
�D¶� \HDU� DQG� the annual rate of precession 
adopted in the different scriptures are given in 
Table 1 above. 

 

It can be seen from Table 2 that the sidereal 
periods of the Sun and the Moon calculated in 
the %K�VYDW¯ are almost the same as in the 
6ÌU\D� 6LGGK�QWD� and is notable improvement 
compared to the periods of the other planets, 
having regard to the comparatively slow motion 
of Jupiter and Saturn. 

 

From the date he dedicated his %K�VYDW¯, 
�DW�QDQGD� very cleverly introduced a new cal-
endar for the benefit of society.  Many calendars 
had been introduced by this time (such as the 
�DN�EGD�� *DWDNDOL�� +LMLU�EGD and .KU¯�"�EGD), 
DQG��DW�QDQGD� WRRN� the �DN�EGD and Gatakali 
Calendars as his reference calendar and initial-
ized his ��VWU�EGD Calendar.  He explained the 
method of converting the �DN�EGD and the 
Gatakali Calendars into his ��VWU�EGD Calendar 
in the first chapter (i.e. WLWK\�GL-GKUXY�GKLN�UD) of 
the %K�VYDW¯.  The relevant �ORND, and its exact 
translation, are given below: 

 

ú�ø.�D nø-�-6�8� �-Ó-h.�.
®- 
�-ø< ��-k1"	2ø4 �-�2�2�D ø�8�J��hú�Ñ2 �4�Da  
.��D�<�<ý��8	�1�D �-Ó-h.÷D ø.��D � ð�bX. 
Yb 

 

Gatakali can be ascertained by adding nava 
-9 adri -7 indu -1, k���QX -3, hence 3179 to 
�DN�EGD. Subtract viyat -0 nabhaÚ -0 locan 
-2 veda -4, hence 4200 from Gatakali, the 
result is known as ��VWU�EGDSLüÂa.   

 

Here is an example.  The above method has 
been implemented to convert the present year 
CE 2019 to the ��VWU�EGD Calendar.  The 
present year CE 2019 Å� 78 = 1941�DN�EGD.  
�DN�EGD 1941 + 3179 = 5120Gatakali.  Gatakali 
5120 ± 4200 = 920 ��VWU�EGD.  Hence as per 
the record, the %K�VYDW¯�was written in CE 1099 
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and 920 years have passed.  However, in this 
paper I have referred to the "¯N�V made in �DND 
1374 (CE 1452) i.e. ��VWU�EGD 353.  Therefore 
all the examples mentioned here are in ��V-
WU�EGD 353. 
 

In his chapter WLWK\�GL-GKUXY�GKLN�UD���DW�-
nanda gives the method of determining the solar 
days (tithi) and the longitudes (dhruva) of the 
nine planets: the Sun (Ravi), the Moon (soma), 
Mars (Maúgala), Mercury (Budha), Venus (�XN-
ra), Jupiter (B�haspati), Saturn (�DQL), and 5�KX 
and Ketu (the µshadow planets¶).   

 

�DW�QDQGD starts his calculations from the 
Sun.  In this same chapter (Chapter 1), in �ORNDV 
4 and 5 he gives an empirical method for deter-
mining the longitude (GKUÌY�úka) of Sun.  The 
�ORNDV are shown below: 
 

�C���-�ø-�20 �3�Jl2�.�
���- 
 

æ� n��8 .�.��<	8�-ÅL 1�3�J.� -6��C ��-�-�@a  
�-Ó-h.÷D â��3J.	�»Ñ-�-.°�2�<¼��9.�J��DbX. 
[b 
�iDú9D �8.���À�2�D �3�-J.	�C���-�øD ß-�@a  
�8�C ��8  n<�ß 4�ú@ úÿ-�- �iC ��8�=	.�ø< l2�D 
ß-�@bX. \b� 
 

Multiply svara (7) �ÌQ\D�(0) dik (10) 1007 to 
��VWU�EGD and add W�QD (49) agni (3) 349 
and divide by a�"D�DWD�(800) add aúga (6) to 
the quotient and divide the quotient by naga 
(7).  The remainder is the saöYDWVDUDS�ODND 
of 6ÌU\D.  By subtracting it from the divisor 
�XGGKL comes.  Keep this value in two 
places.  Divide by 108 to the digit of one 
place.  That is the dhruva (longitude) of 
Madhyama 6ÌU\D.  The quotient should be 
taken up to three places. 

 

Mathematically this can be expressed as: 
 

��VWU�EGD 920 × 1007 = 926440 
926440 + 349 = 926789.  
926789 ÷ 800 = 1158, with a reminder of 389 (1) 
1158 + 6 = 1164 ÷ 7 = 166, with a  
reminder of 2 = the second graha (planet)  
from Sun, i.e. Maúgala is the Saövatsara  
S�ODND 
From (1), 800 ± reminder 389 = 411 �XGGKL 
�XGGKL 411 ÷ 108 = 3 aö�D, with a reminder  
of 87 
87 × 60 = 5220 ÷ 108 = 48 NDO�, with a  
reminder of 36 
36 × 60 = 2160 ÷ 108 = 20 YLNDO� 
 

So the GKUÌY�úka (longitude) of the rising Sun 
on &DLWUD��XNOD�3ÌUüLP� (the Full Moon day of 
the month of Caitra) is 5|43|20 aö�D, or 5 aö�D�
43 N�OD 20 YLN�OD.  In the %K�VYDW¯���DW�QDQGD 
first initialized the position of planets on Caitra 
�XNOD� 3ÌUüLP�� and then calculated the rate of 
motion, position and time taken by the planets to 
complete one rotation in their orbits from the 
ahargaüa (the day count), unlike other VLGGK�QW-
as, including the SÌU\DVLGGK�QWD, which take the 
starting point approximately from the date of the 

beginning of civilization (i.e. 6 manu + 7 Sandhi 
+ 27 PDK�\XJD + 3 yuga + present years elaps-
ed from kaliyuga) for this purpose.  Therefore, 
the number is huge, so there is every possibility 
of making mistakes.  Despite these simplifica-
tions, the %K�VYDW¯ was still regarded as an au-
thority for the calculation of eclipses. 
 
4.1  The Implementation of �DW�ö�D 
 

Ancient Indian astronomers believed that the 12 
constellations and 27 Nak�atras affected human 
life.  They took 360 aö�D approximately for one 
rotation, in 365 days, approximately 1° for one 
day, and specified 30 aö�D for each constella-
tion, and 40/3 aö�D for each star out of 12 
constellations and 27 Nak�atras respectively. 
 

�DW�QDQGD very cleverly multiplied 30/4 by 
360 aö�D� to make it a multiple of one hundred 
without losing the generality: 360 × 30/4 = 2700 
aö�D.  Hence each constellation has 225 aö�D, 
and each nak�atra has 100 aö�D.  He adopted 
2700 aö�D� for the calculation of the motions 
(Sphu"agati) of the Sun, the Moon, 5�KX� DQG�
Ketu.  However he adopted 1200 aö�D for the 
calculation of the motions of the other planets, 
Mars, Mercury, Venus Jupiter and Saturn, by 
taking each constellation as 100 aö�D and 
400/9 for each Nak�atra to avoid dealing with 
huge numbers. 
 

In Chapter IV (Graha spa�"�GKLN�UD), �DW�-
nanda introduces the concept of �DW�ö�D while 
determining the positions of the planets.  As an 
example, in �ORND 4.10 he explains the positions 
of 5�KX and Ketu as follows:  
 

�-`ø8 �2Ù¼.�.
:- 
 

æ�úJ�C �8	��C 	�-QC l2�- J�2�C ���1� -�Da  
ùù-ú�8i-6/��< �2ùC ß-Äb- J�2�C Û2 � �-`2ÅDb[. 
XWb 

 

(Multiply GLQDJDüD by veda ± 4 and then 
divide by GD�D 10.  Add the quotient to the 
last given dhruva (longitude). Subtract it 
from ù�± 0 ù�± 0 æú ± 7��8i ± 2, hence 2700.  
That is 5�KX.  Again by dividing the given 
number by 225 the U��L (constellation) of 
5�KX will come. 

 

Then by adding FDNU�UGKD�1350 to 5�KX, Ketu 
comes.  And by dividing the position number of 
Ketu by 225, U��L� (constellation) of ketu can be 
determined.   
 

Mathematically 
 

$KDUJDüD 27 × 4 =108 ÷ 10 = 10|48|0 
The longitude of U�KX (p�ta GKUÌY�úka) is calcu-
lated from the procedure in 7¯WK\�GLGKUXY�GKL-
N�UD for the year CE 2019 (��VWU�EGD 920) 
4091|01 ÷ 2 = 2045|01 + 10|48|0 = 2056|31 
2700 Å 2056|31 = 5�KX Sphu"a 643|42  
5�KX 643|42 ÷ 100 = 6 with a reminder of 43|42 
This shows that on DKDUJDüD 27 5�KX lies in 
U��L Mithuna (Gemini) and Nak�atra Punarbasu.  
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Since the motions of 5�KX and Ketu have to be 
calculated opposite to the motions of the 
planets, 
the FDNU�UGKD 1350 + 5�KX 643|42 = Ketu 
1993|42 
Here �DW�QDQGD took the FDNU�UGKD (half 
rotation) as 1350, as one cakra (rotation) is 
2700 Dö�D.  
It was known that 5�KX and Ketu points are 
opposite to each other (180° apart) in a circle 
and when the Moon is near the 5�KX�SRLQW�WKHQ�
there is a chance of getting lunar eclipse and 
when is on Ketu point Solar eclipse occurs (see 
Figure 1). 
Ketu 1993|42 ÷ 100 =19 with reminder 93|42 
This shows that Ketu lies on r��L Dhanu 
(Sagittarius) and the Mula Nak�atra. 
 

Implementation of �DW�ö�D had a significant 
role in predetermining solar and lunar eclipses.  
This was because (1) 2700 aö�D is a very big 
number in comparison to 360 aö�D, and (2) 
assigning 100 aö�Dto to each nak�atra or 
constellation could avoid many errors while 
taking fractions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A schematic diagram (not to scale) showing the 
relative positions of the Sun, the Earth and the Moon for the 
calculations of the times of solar and lunar eclipses 
(diagram: Sudhira Panda). 

 
4.2  Calculating Time According to the 
      %K�VYDW¯  
 

In this section we want to show the simplified 
method introduced in the %K�VYDW¯ to calculate 
time from gnomonic shadows.   
 

As an example: calculation of time on 15 
June of this year (2019), when the shadow of 
the 12 unit gnomon becomes 15 units. 
Answer: Here the equinoxial day is 23 March. 
So the number of days elapsed = 8 days of 
March + 30 days of April +31 days of May +15 
days of June = 84 days  
or 30 days Aries + 30 days Taurus + 24 days 
Gemini = 84 days 
Now to calculate FDU�UGKDOLW� 

for the month of Aries = 30+30/2 = 45 
for the month of Taurus = 30+30/6 = 35 
for the month of Gemini = 24/2 = 12 
So FDU�UGKDOLW� = 45 + 35 + 12 = 92 = 
danda1|32 lita on the day required 
'LQ�UGKD�= 15 +1|32= 16|32 daüÂa 
 

Now, to calculate madhya pUDEK� (which is 
the mid-GD\�6XQ¶V�UD\V� 
 

&DU�UGKDOLW� 92 × 6 = 552/10 = 55|12 
552 Å 55|12 = (496|48)/10 = 49|41 
On 15 June the Sun is in the northern hemi-
sphere.  So the above number should be kept 
as it is. 
Now 49|41 ± ak�a 44|43 = 4|58 � madhya 
SUDEK� 
Here the gnomonic shadow or i�"DFK�\� = 15|0 
aúgula × 10 = 150 + 100 = 250 
250 ± PDGK\D�SUDEK� 4|58 = 245|02 = 245 × 60 
+2 = 14702 � �Dúku 
nowGLQ�UGKD 16|32 = 16 × 60 + 32 = 992  
992 × 100 = 99200 
99200/14702 = daüÂa 6|45 OLW� 
Now we have to convert this to modern time. 
daüÂa 6|45 OLW� ~2 hours and 42 minutes 
We know that in Indian astronomy the day starts 
at sunrise. 
'LQ�UGKD on 15 June is 16|32 ~6 hours and 22 
minutes = 6h 22m 
Mid-day at 87° longitude is at 12 h ± 14m = 11h 
46m 
Therefore, 11h 46m 

Å 6h 22m = 5h 24m, which is 
the time of sunrise. 
5h 24m + 2h 42m = 8h 06m is the required time 
when the shadow of 12 aúJXOD��Dúku becomes 
15 aúgula. 

 
4.2.1  A Physical Explanation to all the Terms  
         and the Methods Adopted 
 

To know time from the gnomonic shadow there 
are two terms that are involved in the calcu-
lation: 
 

(1)  Madhyaprabha, and 
(2)  DLQ�UGKDdaüÂa 
 

Then, for the calculation of Madyaprabha and 
DLQ�UGKDdaüÂa we need to calculate FDU�rdha, 
Q�Âi and nata.  Nata has two parts, saumyanata 
and yamyanata. 
 

The  first  step  of  this method is to decide 
whether the Sun is in the northern or southern 
sky.  If the Sun is in the north then ak�a has to 
be subtracted (otherwise it would have to be 
added).  This is because when he wrote the %K�V-
YDW¯�� �DW�QDQGD� KDG� PDGH� DOO� his calculations 
with reference to Puri, Odisha, which is in the 
northern hemisphere.  Therefore, when the Sun 
travels from the northern to the southern hemi-
sphere it has to pass the equator, the zero 
equinoxial gnomonic shadow line.  Hence, to con-
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sider the gnomonic shadow when the Sun is in 
southern hemisphere the term ak�a has to be 
added.  According to the %K�VYDW¯, the Sun lies 
in the northern hemisphere, from the vernal equi-
nox to the autumnal equinox, for 187 days (the 
modern value is 186 days), while it is in the south-
ern hemisphere, from the autumnal equinox to 
the vernal, for 178 days (the modern value is 
179 days). 
 

In the second step we have to calculate 
FDU�UGKD�(spreading).  As we know, the duration 
of the day and the night changes every day and 
is not completely uniform.  Therefore to take care 
of the changes in a day, the duration FDU�UGKD 
has to be calculated.  This is an empirical meth-
RG� DQG� �DW�QDQGD� FODLPV� WKDW� the method is 
completely his own and that he did not copy 
from any previous texts.  From MadhyaSUDEK� 
the midday gnomonic shadow for the day con-
cerned can be derived.  From the proportion of 
Madyaprabh� and I�"DFK�\� the time can be cal-
culated. 

 

'LQ�UGKDdanda can be calculated by adding 
FDU�UGKDOLW� to, or subtracting it from, the GLQ�UG-
hadaüÂa on 0DK�YL�uvasaúNU�QWL (i.e. 15 daüÂa, 
depending on whether Sun is in the northern or 
the southern hemisphere).  Table 3 lists the mid-
day gnomonic shadow on all 12 saúNU�QWLs, along 
with modern data.  

 

The length of the shadow of the gnomon 
should be recorded at the moment at which the 
time has been calculated.  This is known as 
i�"DFK�\�. 
 

i�"DFK�\� × 10 + 100 Å 0DGK\D�SUDEK�  
= �Dúku              (2) 
(Note that this �Dúku is different from the gno-
mon itself.) 
Keep GLQ�UGKD (half day duration) of that day.  
Convert daüÂa and OLW� into OLW� by multiplying 60 
with daüÂa and then adding OLW�.  Now multiply 
OLW��pind with 100 and then divide it by the value 
of �Dúku in equation (2).  The result is the 
i�"DFK�\�N�OD� (time).  This time is of two types, 
*DWDN�OD: from morning up to noon, and E�va-
N�OD: from noon through to the evening. 
 

To know madhya prabh��the FDU�UGKDOLW� has to 
be calculated.  Multiply 6 with FDU�UGKDOLW�.  Keep 
the result in two places.  Subtract one tenth of it 
from the number in the second place.  If the Sun 
is in the northern hemisphere then keep the 
number as it is, otherwise add one third of the 
number to it.  Again divide the number by 10.  If 
the Sun is in southern hemisphere then ak�a 
has to be added. 
 

�DW�QDQGD�FODLPHG�LQ� the %K�VYDW¯ that this 
method of calculation of &DU�UGKD outlined there 
was entirely his own.  According to him, if the 
Sun is in Aries (Me�a), then the day count + the 
half of the day count is the FDU�UGKDOLW�.  If the 
Sun is in Tarus (V��a) then &DU�UGKD will be the 
FDU�UGKDOLW� of Me�a + number of days elapsed 
from V��a + one sixth of number of days elaps-
ed from V��a.  Again, if the Sun is in Gemini 
(Mithuna), the half of the days elapsed from the 
month of Mithuna have to be added to the car-
�UGKD of the month V�i�a.  The result is the car-
�UGKDOLW� for the month of Gemini (Mithuna).  The 
FDU�UGKDOLW� for the months of Karka"a to .DQ\� 
will decrease in the similar manner, and on Kan-
\��VDúNU�QWL it will be zero.  A similar calculation 
has to be followed if the Sun is in the southern 
hemisphere. 

 

The half day duration, dLQ�UGKD, on 0DK�YL-
�uvasaúNU�QWi is 15 daüÂa.  Calculate the FDU�UG-
KDOLW� for the day concerned, add the FDU�UG-
KDOLW� to 15 if the Sun is in the northern hemi-
sphere and subtract it if the Sun is in southern 
hemisphere.  The result is the required GLQ�UGKD 
(half day duration) for the day concerned. 
 

6LQFH��DW�QDQGD� PDGH� all his calculations 
with respect to ahargaüa, in order to make all of 
my calculations in same reference frame I adopt-
ed the data provided by NASA.  The old data 
table by NASA is given below, where 21 March 
has been taken as 0DK�YLVXYa SaúNU�QWi or Me�a 
saúNU�QWL.  In the %K�VYDW¯, �DW�QDQGD mentions 
that the Sun lies in the northern hemisphere for 
187 days and in the southern hemisphere for 
178 days, which is the same as in the NASA 
table. 

 
Table 3: The mid-day gnomonic shadow on all 12 6DQNU�QWL. 

 

Saúkr�nti 
Number 

Declination of 
the Sun (/) in 

degrees 

Right ascension of 
the Sun (�) in 

degrees 

Midday gnomonic  
shadow from the  
modern method 

Midday gnomonic 
shadow from themethod  

in the %K�VYDW¯ 

Difference  
and  

Error (%) 
1 0.0 0.0 4.3676 4.45 0.0824 = 0.69% 
2 11.5008 30.0 1.7933 1.9788 0.1855 = 1.55% 
3 20.2017 60.0 0.04225 0.098 0.0557 = 0.46% 
4 23.5 90.0 Å0.7339 Å0.658 0.0759 = 0.63% 
5 20.2017 120.0 Å0.04225 Å0.037 0.0795 = 0.66% 
6 11.5003 150.0 1.7933 1.739 Å0.543 = 0.45% 
7 0.0 180.0 4.3676 4.45    0.082 = 0.69% 
8 Å11.5004 210.0 7.3537 7.496  0.1423 = 1.19% 
9 Å20.2017 240.0 10.1414 10.232  0.0906 = 0.75% 
10 Å23.5 270.0 11.3875 11.24 Å0.1475 = 1.23% 
11 Å20.2017 300.0 10.1414 10.148  0.0066 = 0.05% 
12 Å11.5008 330.0 7.3537 7.595    0.2413 = 2.025% 
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5  CONCLUDING REMARKS 
 

In this paper, the contribution of �DW�QDQGD to 
the world of mathematics and astronomy has 
been discussed.  Some of the �ORNDV from his 
text %K�VYDW¯ has been translated to explain his 
achievements.  It was necessary in order to pre-
pare an accurate almanac for Hindu society, and 
mostly for the benefit of the -DJDQQ�WKD�WHPSOH�
at PuruâRWWDPDGK�PD 3XU¯�� For this purpose he 
applied the observational data of 9DU�KDPLKLUa 
and took CE 450 as the year when the text of 
the 3DxFDVLGGK�QWLN� RI�9DU�KDPLKLUD�ZDV�ZULW-
ten, as zero ayan�ö�D¶� \HDU.  �DW�QDQGD�start-
ed ��VWU�EGD from the year he dedicated the 
%K�VYDW¯ to society, i.e. CE 7 April 1099 (Mishra 
1985).  Correspondingly, it was the Pournima 
(Full Moon day) of the first lunar month Caitra of 
the gata-kali (elapsed kali era) year 4200.  All 
calculations in the %K�VYDW¯ �were in �DVWU�EGD, 
and he had given rules to convert ��VWU�EGD to 
�DN�EGD and vice versa.  �DW�QDQGD has taken 
the latitude and longitude of Puri in Odisha as 
his reference point.  Maybe it was easy for him 
to recheck his methods from observations made 
at his native place. 

 

The most interesting thing found in the %K�V-
YDW¯ is that �DW�QDQGD could calculate the posi-
tion and rate of motion of heavenly bodies quite 
accurately without using trigonometric functions.  
Though some ancient astronomers rejected the 
methodology by saying that was an approximate 
method, it is interesting to see that this µapproxi-
mate method¶�could provide exact solutions when 
predetermining eclipses.  Use of �DW�ö�D (a cen-
tesimal system) in the procedure and making a 
back transform was quite a modern idea that 
was adopted by �DW�QDQGD.  A strong claim ex-
ists that the conversion of the sexagecimal syst-
em to the centesimal system was the first step 
that led mathematicians towards the introduction 
of the decimal system in mathematical calcula-
tions (Vaidya, 1981: 110Å112).  In this context, it 
is necessary to study the physical and math-
ematical interpretation of all 128 �ORNDV in the 
%K�VYDW¯.  
 

A detail study is now in progress to establish 
the relationship between the method outlined in 
the %K�VYDW¯�and the modern European method 
of predetermining an eclipse.  
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8  APPENDIX A: THE METHOD OF  
    CALCULATING THE SIDEREAL PERIOD 
    OF MOON 
 

Step 1. Multiply 90 by ahargaüa and add Can-
dra Dhruva with it.  Divide the result by 2457. 
Step 2. Multiply 100 by ahargaüa and add 
Kendra dhruva to it.  Divide the result by 2756. 
Step 3. Divide ahargaüa by 120 and add the 
remainder of Step 1.  The FDU�UGKD of the respec-
tive month has to be subtracted from the result. 
The cDU�UGKD for each month is given in Table 4. 
Step 4. Divide ahargaüa by 50 and add the re-
mainder of Step 2. Then divide the result by 100.  
Step 5. From the quotient the corresponding 
KhaüÂa and AnukhaüÂa (khaüÂa +1) have to tak-
en from Table 5 below.  Subtract KhaüÂa from 
AnukhaüÂa, and the result is chandra bhoga.  The 
remainder from Step 4 has to be multiplied by 
chandra bhoga.  Divide the result by 100.  The 
result has to be added to KhaüÂa and the result 
of Step 3.  The result is candra sphu"a. 
 

In the similar manner candra sphu"a for the 
next day (ahargaüa) has to be calculated.  The 
positional difference of the day is called candra 
bhukti (the MRRQ¶V�Giurnal motion).  This motion 
is not uniform.  Therefore for the sidereal calcu-
lation I kept on increasing the ahargaüa until the 
Moon comes to the same position (candra 
sphu"a). 
 
Table 4: The Carardha value that has to be subtracted in 
different months 
 

Name of Sidereal 
Month 

&DU�UGKD Name of Sidereal 
Month 

Aries 0 Pisces 
Taurus 1 Aquarius 
Gemini 2 Capricorn 
Cancer 2 Sagittarius 

Leo 1 Scorpio 
Virgo 0 Libra 
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Table 5: Candra KhaüÂa-difference (antara) ± Bhuktibodhaka Chakra 
 

0 1 2 3 4 5 6 7 8 Number 
0 0 1 3 6 10 16 24 35 KhaüÂa 
0 1 2 3 4 6 8 11 11 Difference 

 

9 10 11 12 13 14 15 15 17 Number 
46 60 75 91 108 1 143 159 175 KhaüÂa 
14 15 16 17 18 17 16 16 15 Difference 

 

18 19 20 21 22 23 24 25 26 Number 
190 202 213 222 230 235 239 241 242 KhaüÂa 
12 11 9 8 5 4 2 1 1 Difference 

 

27 28 Number 
243 243 KhaüÂa 
0 0 Difference 

 
9  APPENDIX 2: THE METHOD OF CALCULATING THE MID-DAY GNOMONIC SHADOW IN 
    DIFFERENT SAù.5�17,6 
 

The NASA table for different SaúNU�QWLV: 
 
(1) Aries 21 March ± 20 April = 31 days 
(2) Taurus 21 April ± 21 May = 31 days 
(3) Gemini 22 May ± 21 June = 31 days 
(4) Cancer 22 June ± 22 July = 31 days 
(5) Leo 23 July ± 21 August = 30 days 
(6) Virgo 22 Aug. ± 23 Sept. = 33 days 
 
 
(7) Libra 24 Sept.± 21 Oct. = 28 days 
(8) Scorpio 22 Oct. ± 22 Nov. = 32 days 
(9) Sagittarius 23 Nov. ± 22 Dec. = 30 days 
(10) Capricorn 23 Dec. ± 20 Jan. = 29 days 
(11) Aquarius 21 Jan. ± 19 Feb. = 30 days 
(12) Pisces 20 Feb. ± 20 March = 29 days 
 

According to the %K�VYDW¯, the palaprabha (equinoxial mid-day gnomonic shadow) is 4|27 = 4.45   
This is little higher than that of modern data (i.e. 4.37 + 0.08) 
 

1.  On 21 March the Sun lies on the equator. So we take the 6XQ¶V�SRVLWLRQ�at 0°. Aries. 
So the gnomonic shadow will be 4.45. 
2. On 21 April, Taurus = 30° = ahargaüa = 31 = 30 +1 
FDU�UGKDOLW� = 45 + 1 + 1/6 = 46.17 
46.17 × 6 = 277.02 Å 27.70 = 249.32/10 = 24.932 
madhya SUDEK� = 44.72 Å 24.932 = 19.788 
i�"DFK�\� = 19.788/10 = 1.9788 
3.  On 22 May, Gemini: 60° =  ahargaüa 62 = 30 + 30 + 2 
FDU�UGKDOLW� = 45 + 35 + 1 = 81 
81 × 6 = 486 ± 486/10 = 437.4/10 = 43.74 
madhya SUDEK� = 44.72 Å 43.74 = 0.98 
i�"acK�\� = 0.98/10 = 0.098 
4.  On 22 June, Cancer: 90° = ahargaüa 93 = 30 + 30 + 33  
FDU�UGKDOLW� = 45 + 35 + 33/2 = 96.5 
96.5 × 6 = 579 Å 57.9 = 521.1/10 = 52.11 
madhya SUDEK� = 44.72 ± 52.11 = Å7.39 
i�"DFK�\� = Å7.39/10 = Å0.739 
5.  On 23 July, Leo: 120° =  ahargaüa 124  
(In this case there is little change in procedure.  It has been mentioned that the Sun lies 187 days in the 
Northern Hemisphere and 178 days in the Southern Hemisphere.  So when ahargaüa exceeds half of the 
days in a hemisphere then we have to take the smaller part for the FDU�UGKDOLW��calculation. i.e. 187 ± 124 
= 63. So we have to calculate the FDU�UGKDOLW� of 63 ahargaüa.) 
63 = 30 + 30 + 3 
FDU�UGKDOLW� = 45 + 35 + 3/2 = 81.5 
81.5 × 6 = 501 ± 50.1 = 450.9/10 = 45.09 
Madhya SUDEK� = 44.72 ± 45.09 = ±0.37 
i�"DFK�\� = ±0.37/10 = ±0.037 

THE SUN  IS IN THE NORTHERN HEMISPHERE  
FOR 187 DAYS  

THE SUN IS IN THE SOUTHERN HEMISPHERE  
FOR 178 DAYS 
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6.  On 22 August, Virgo: 150° = ahargaüa 154 = 187 ± 154 = 33 = 30 + 3 
FDU�UGKDOLW� = 45 + 3 + 3/6 = 48.5 
48.5 × 6 = 291 ± 29.1 = 261.9/10 = 26.19 
madhya SUDEK� = 44.72 ± 26.19 = 18.53 
istachaya = 18.53/10 = 1.853 
7.  On 24 September, Libra: 180° = ahargaüa 187 
Shadow length = 4.45 
8.  On 22 October, Scorpio: 210° = ahargaüa 215 
215 ± 187 = (Southern Hemisphere) = 28 
FDU�UGKDOLW� = 28 + 14 = 42 
(there is little change in procedure for the Southern Hemisphere) 
42 × 6 = 252 ± 25.2 = 226.8 + 226.8/3 = 302.4/10 = 30.24 
madhya SUDEK� = 44.72 + 30.24 = 74.96 
i�"DFK�\� = 74.96/10 = 7.496 
9.  On 23 November, Sagittarius: 240° = ahargaüa 247 
247 ± 187 = 60  
FDU�UGKDOLW� = 45 + 35 = 80 
80 × 6 = 480 ± 48 = 432 + 432/3 = 576/10 = 57.6 
madhya SUDEK� = 44.72 + 57.6 = 102.32 
i�"DFK�\� = 102.32/10 = 10.232 
10.  On 23 December, Capricorn: 270° = ahargaüa 277 
277 ± 187 = 90  
Southern Hemisphere 178 ± 90 = 88 
We have to calculate FDU�UGKDOLW� of the smaller part. 
So FDU�UGKDOLW��RI����  45 +35 +14 = 94 
94 × 6 = 564 ± 56.4 = 507.6 + 507.6/3 = 676.8/10 = 67.68 
madhya SUDEK� = 44.72 + 67.68 = 112.4 
i�"DFK�\� = 112.4/10 = 11.24 
11.  On 21 January, Aquarius: 300° = ahargaüa 306 
306 ± 187 = 119 
178 ± 119 = 59 
59 = 45 + 29 + 29/6 = 78.83 
78.83 × 6 = 473 ± 47.3 = 425.7 + 425.7/3 = 567.6/10 = 56.76 
madhya SUDEK� = 44.72 + 56.76 = 101.48 
i�"DFK�\� = 101.48/10 = 10.148 
12.  On 20 February, Pisces: 330° = ahargaüa 336 
336 ± 187 = 149  
178 ± 149 = 29 
29 + 29/2 = 43.5 
43.5 × 6   = 261 ± 26.1 = 234.9 + 234.9/3 = 312.3/10 = 31.23 
madhya SUDEK� = 44.72 + 31.23 = 75.95 
i�"DFK�\� = 75.95/10 = 7.595 
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