351

Non-Interfering Software Distribution

Richard Schmidt
Lockheed Martin ATM
richard.b.schmidt@lmco.com

Terry Duffy
McDonnell Douglas
terry.duffy @imco.com

Abstract

This paper describes software distribution in the
Display System Replacement (DSR) project. Non-
interfering software distribution refers to the capability
of a distributed system to receive updates to its software
while it is functional without compromising its mission.
DSR is a major Air Traffic Control (ATC) system
designed for the United States Federal Aviation
Administration (FAA). Deployment has started and will
continue to over 20 sites, becoming operational in 1998.
A single DSR site encompases several hundred RISC
workstations servers and clients interfacing to a local
pair of redundent mainframes which supply radar and
flight data. Updates to the workstation software will be
incorporated without interfering with the real-time
mission critical applications.

Although the implementation meets the specific
requirements of DSR, the problem and solution are of a
general nature that are applicable to other systems. The
problem, simply stated, is how the components of a
distributed system can receive a new release of software
without interfering with the ongoing mission. This
solution paces the distribution and stores the new
software in a location independent from the currently
operating software until the operator of the system is
ready to use it. It may be necessary to restart the
processor for the new software to be loaded, but the
actual transmission of the data to the distributed
processors can occur without degrading the function of
the system.

System Requirements

The primary focus of the DSR system is to provide
air traffic controllers with timely data, and the contract
identifies numerous performance and availability
metrics that must be met. Software distribution is
performed by the Distribute Software function, and it
must not interfere with these fundamental system
objectives. Additionally, the Distribute Software
subsystem has several system operator requirements
levied upon it:

e It must certify the integrity of files after they have
been transferred.

e It must verify that a release is complete and
correctly installed or report that it has failed.

e It must inform the operator of progress as it is
occurs.
In addition to these requirements there are derived
requirements imposed by the system architecture:

e The distribution of a software release should not
perturb the response time of other user commands
and system functions.

e The Distribute Software server also processes
unrelated user commands and must return responses
to the clients within a specified time interval. This
interval must be met even when a large volume of
data is being distributed.

Connectionless transmission is used to distribute the
release data in order to minimize LAN traffic. The
buffer size chosen for this data is 3840 bytes, which
conforms to the frame size for the OSI communications
stack being used. When UDP/IP is used, three frames
are transmitted for each buffer. Connectioned
transmission is used for some of the control messages.
A Message Services subsystem provides a 64 Kbyte
message interface at the application layer. Messages
larger than 64 Kbytes are broken down into 64 Kbyte
messages by the Distribute Software subsystem.

System Software Releases

A system software release is a set of files necessary
to support the ATC mission. There are several different
types of releases, each with different characteristics and
frequency of update:

® An Operating System (OS) upgrade consists of
selected backup images, which are updates to the
OS, rather than an entire copy. There may be
prerequisite updates and the size could be as large
as 76 Mbytes.

e A full software system release is a complete set of
the developed software system and is approximately
85 Mbytes. This type of release occurs when either
a large collection of changes has been bundled or a
common component bound in the modules has
changed.

Proceedings of the DASIA 97 Conference on ‘Data Systems in Aerospace’, Sevilla, Spain, 26-29 May 1997 (SP-409, August 1997)

© European Space Agency * Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1997ESASP.409..351D

352

e A delta release is a subset of the full release. It
occurs when a fully compatible subset of files have
changed and the changes are independent and can
be shipped as a delta to a release. An example is
when the values of adaptable data unique to a site
are changed. The implementation allows deltas to
be built upon a full system release or other deltas.

Software Bill of Materials

Files to be shipped as part of a release are described
in a special file within the release called a Software Bill
of Materials (SBOM). An SBOM is a text file
consisting of one or more stanzas for each file to be
distributed. Two types of SBOMs are defined:

e Source SBOM - describes the file to be shipped as
it exists in the development environment, consisting
of source stanzas which have fields describing:

+ relative path name on the development system
+ source ownership

+ target file permissions

+ target file ownership

+ relative path name on the target system

e Distribution SBOM - describes the file as it will
exist in the target environment including all of the
fields in the Source SBOM and the target stanzas
containing:

+ full path name on the target system

¢ symbolic link so the file can be referenced by
operational software

4 checksum.

The source SBOMs are configuration managed
along with the source code through the entire
development cycle, and are maintained by the software
developer. These source SBOMs have an imbed
structure that allows each development team flexibility
in how it manages release information. During the
software build process the source SBOM is transformed
into a distribution SBOM by the build tools which walk
the imbed structure until all leaf nodes have been
traversed. This is done at build time because that is the
earliest point the file checksums and the actual release
name is known. The result is the distribution SBOM,
which is a single file containing source and target
stanzas for all files within the release. A text
representation was selected to provide a universal
(development language independent) format which is
easy to parse by programs and easy to edit by support
personnel.

These files can grow large, depending on the
number of files in a software release, and parsing of the
SBOM could be a performance issue on some systems.
Two methods to improve performance could be used:

1. Parse off-line and provide an language dependent
version of the SBOM.

2. Parse on-line and save the results in a checkpoint
file for future use.

Maintenance Facility

Development
Release
Repository

Conceptual Architecture

Primary LAN

Site A

Site

Release
Repository

Backup LAN

As

\ WAN
N

Site

Release
Repository

\J

Backup LAN

Figure 1.

© European Space Agency * Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1997ESASP.409..351D

System Environment

The environment of the system that relates to
Software Distribution consists of the site, operational
processors on two LANs for redundancy, a support
processor connected to the operational distribution
servers via a third LAN, and a technical center where
Software Maintenance occurs. The releases are packaged
and transmitted off-line via a WAN until they arrive at a
site’s support processor, as shown in the Conceptual
Architecture (figure 1).

353

Commercially Available Software (CAS) is used to send
the releases to sites because it is sufficient in a support
environment. Currently available CAS is not appropriate
to distribute the releases on the operational LANs
because they would interfere with the real-time ATC
mission. All releases that have been received by the
support processors are said to be deployed. Support
software is available to locally tailor the release for use at
the site and make the release eligible for distribution over
the operational LANs.

Release

Maintenance Facility

Site Architecture

Release
Distribution
Function
Dist. Server

Dist. Agent

Monitor and
Control
Function

M&C Server

Dist. Agent

Primary LAN

Release

Release
Distribution
Function
Dist. Server

Application
Function

Dist. Agent Dist. Agent

Application
Function

M&C Server
Dist. Agent

Dist. Agent

Backup LAN

Figure 2

Network Architecture

Software Distribution is not dependent on a specific
network architecture. For example, the distributed ATC
system consists of hundreds of processors connected
over two LANs (figure 2). Two independent subsystems
are used because the system must be highly available
and reliable. The primary subsystem uses IEEE 802.5
Token Ring with redundancy in the network. The
backup subsystem uses IEEE 802.3 Ethernet 10Base2.
Software distribution occurs independently on these
networks and must occur on both since each processor is
attached to only one LAN. Another architecture, such
as FDDI, could be chosen without altering the Software
Distribution subsystem.

Because the primary requirement of Distribute
Software is to deliver the software updates without
interfering with the ongoing ATC mission, a not to
exceed data rate is selected for the software at build
time. It currently is approximately 0.472 Mbps (59
Kbytes per second) for either LAN. With those values,
Distribute Software’s data rate will not exceed 3% of the
Token Ring nor 5% of the Ethernet maximum data rate.

Software Components

The following operational software components are
relevant to the distribution (figure 3):

e Monitor and Control Server -- processes user
command to distribute software for a release to a set
of processors and manages responses and displays.

e Distribute Software Server -- controls the long
running distribution function and reports status.

e Distribute Software Agent -- prepares location to
receive the new release, sets the OS characteristics
of each file, and verifies its integrity.

e Broadcast Data Server -- Separates release files into
blocks of data, broadcasts the blocks, and monitors
their receipt on a per file basis.

e Broadcast Data Agent -- receives blocks and
rebuilds them into files.

e Monitor and Control Agent -- registers the
distributed release so that it is available for
incorporation upon user request.

There is one active instance of each server per

LAN, while each agent is active on every operational

© European Space Agency * Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1997ESASP.409..351D

354

processor. In general each server is replicated so that a
backup is available should the primary server fail. The
Monitor and Control Server is on a Monitor and Control
(M&C) processor with a display and keyboard for the
user to issue commands that control the system. The
Distribute Software Server is on a Logical Interface Unit
(LIUS) processor which has a dedicated connection to

the support processor where the deployed releases are
stored. The connection is referred to as a maintenance
LAN and is used to remotely mount file systems from
the support processor on the LIUS processor. Each
deployed release is stored in a location on the support
processor that can be remotely accessed by the
Distribute Software Server.

Monitor and 1 Monitor and .
Control Control .
Server 3 Agent .
4
4
IR Y L.
Distribute 1 <Z—.Distﬁbu!e
Software 2 Software 2
Server 3 Agent
4 4
4 l————P]
3
Broadcast Broadcast
Data ’ 3 Data '
Server 3 Agent 3
Phases
1 - Validate release integrity and determine which files must be broadcast
2 - Prepare Agents to receive new release
3 - Broadcast files and verify receipt file by file
Figure 3

4 - Accept releass by copying local files (if any), running post user exit, and verifying release integrity

Software Components

Distribute .
Software 2
Agent .
4
Broadcast
Data
. Agent 3

Phases of Distribution
There are four distinct phases of distribution:
e Phase 1 - Validate the release

e Phase 2 - Prepare each processor to receive the
release

e Phase 3 - Broadcast the release files

e Phase 4 - Accept the release

Phase 1

Phase 1 begins when the Distribute Software Server
receives a request from the Monitor and Control Server
to start distributing a new release. The request specifies
the new release, the set of target processors, and the
current release for each target. The server validates that
the releases exist in the list of deployed releases on the
support processor. It parses the SBOMs for the releases
and compares the file characteristics of the new release
with those of the current release to establish
commonality. This determines the minimal set of files
that must be broadcast. Files that are identical between
the two releases need not be broadcast because they are
already on the target processors and may be copied
locally during Phase 4. This is done to reduce network
load. All relevant release information is stored in state

data so that any SBOM is only parsed once per
distribution. This is done to reduce the impact of the
/O on the operational system.

The backup Distribute Software Server is notified
that a Distribute Software process has started. It is
available, should the primary server fail, to send a
response to the Monitor and Control Server indicating
distribution has failed so the operator can assess the
situation and start distribution again if desired.

With the number of files to be broadcast to the
destination processors known, each file is verified by
recalculating its 32 bit checksum and comparing it with
the checksum specified in the SBOM which was
retained in state data. Because this is CPU and /O
intensive, it must be paced. Each file verification is an
event separated by a configurable value (for example,
2.5 seconds). When all files to be broadcast have been
verified, Phase 1 is complete.

Phase 2

Phase 2 begins by broadcasting a message to the
Distribute Software Agent on each processor to prepare
a location to receive the new release. This message is a
datagram that all agents on every operational processor
receive. The message contains a bit map that signifies
whether the agent should act on the request or ignore the
message. This use of a bit map will occur in other

© European Space Agency * Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1997ESASP.409..351D

messages during distribution. It is a technique that
allows any processor to be included.

If the message is intended for the agent, it creates
and mounts a new file system to receive the release.
Each processor may have three full releases of
application software. Independent file systems are used
so that one release may be easily deleted, without
affecting another release. If successful, the agent is
eligible to participate in Phase 3. If the release already
exists, the distribution to that processor is considered to
be complete (successful) and that processor receives no
other messages that cause it to take further action. It is
reported as having successfully received the release
when all other processors are finished.

Each agent sends a response to the server,
staggering the replies by separating them by a
synchronized interval indexed by the processor’s rank in
the distribution list. This is done so that the replies do
not arrive at the LIUS processor at the same relative
time and overflow the server. This datagram is
transmitted so that the adapter will filter it out at the
other processors (ie., functional addressing is used).

The server sets a timer to monitor the arrival of a
response from the agent on each target processor. A
time-out or unsuccessful response indicates that the
processor cannot receive the release. It is dropped from
further consideration by modifying the state data that
shows what is being distributed, and distribution
continues. This "prune and continue" approach is
fundamental to this solution. It was adopted because it
is expected in a large distributed system that from time
to time some processors will experience failures. There
should be no single point of failure among the target
processors that would prevent healthy processors from
receiving software updates. A failure on the source
processor, or one of its components (Distribute Software
Server or Broadcast Data Server) will cause the entire
command to fail. The command may be retried as soon
as the backup servers assume the primary role, which
happens in a few seconds. When all target distribution
agents have responded (or a time-out was detected), the
Distribute Software Server sends the list of files to be
broadcast to the Export Broadcast server to begin Phase
3 and sets a timer to monitor responses. The Export
Broadcast Server must transmit a health check to the
Distribute Software Server every 60 seconds during the
long running distribution. This marks the end of Phase
2.

Phase 3

Phase 3 begins with the Broadcast Data Server
receiving a list of files to broadcast to a set of
processors. Only one such request to broadcast a list of
files is supported at any one time. The release
information necessary to broadcast a complete release
exceeds the 64 Kbyte buffer limit and requires multiple
messages to be queued by the server. They will be

355

completed in order and the Distribute Software Server
will track all completions before proceeding to Phase 4.

There are three parts to Phase 3 and they occur on a
file by file basis. Each file is subdivided into blocks.

1. The Broadcast Data Agents prepare to receive a
file.

2. The Broadcast Data Server transmits the file and the
agents receive it, block by block.

3. The Broadcast Data Server verifies that the agents
receive the blocks in order.

Prepare for Broadcast

The Export Data Server sends a message to all
Broadcast Data Agents with a bit map signifying which
ones are target processors for the release. The agents
will receive datagrams that contain blocks of the file if
their bit is set; otherwise they will be unaffected by
those messages. This technique is used to allow a retry
should any processor fail to receive a file. The agents
that successfully received the file do not receive it again,
the datagrams are only delivered to those agents that
need it.

Since this is a high availability system, it is entirely
possible that should a soft failure occur during
distribution, the agent software would be restarted
before the retry limit was reached. It would then receive
the file successfully and distribution would continue to
all target processors for the next file. The server allows
the initial attempt and up to three retries per file before
it gives up on an agent and prunes it from any further
action during the command. Although retries tend to
slow down the distribution, we found it to be a valuable
fault tolerance asset. A retry is necessary at the
Application Layer if the lower layers of the OSI
protocol stack did not detect and correct a missing
frame. This could occur for example on Ethernet with a
faulty repeater. The entire file is re-transmitted, rather
than a missed frame. If frames are missed at the
Application Layer frequently, the overhead of the file re-
transmission can be reduced by switching to a frame-
based retry. This involves more memory buffers to store
frames as they arrive, and more frequent communication
with the agents to detect a missing frame before the
buffers are exhausted.

When all target processor agents have responded
(or a time-out was detected and all retries exhausted),
the first part of Phase 3 is complete.

Broadcast the File

The second part of Phase 3 begins when the Export
Data Server opens the first file to be broadcast.
Approximately 4 Kbytes of data are read into a block.
Each block is assigned an incremented identifier and
sent in a datagram to the agents. The transmission of
each datagram by the server is paced to not exceed the
configured LAN limit. If the server is also a destination

© European Space Agency * Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1997ESASP.409..351D

356

for the release, the block is copied locally into the new
file system. The agents receive the blocks and monitor
that they arrive in order. They are written to the new
release file system. This continues until all blocks of the
file have been read, transmitted, received, and written.
The Distribute Software Server is notified periodically
that the Broadcast Data Server is still healthy. The
Monitor and Control Server is notified when another file
has been transmitted so the number of files broadcast (n
out of m) is displayed on the Monitor and Control
processor. When all blocks in a file have been
transmitted, the second part of Phase 3 is complete.

Verify the File

The third part of Phase 3 begins when the timer
expires and a datagram is sent to the agents. If the bit
map indicates the agent should take action, the number
of blocks received for the file is verified against that in
the message. If they are not equal, the response
indicates the transmission error so the file can be retried.
The third part of Phase 3 is complete when all target
processor agents have responded (or a time-out occurred
and all retries exhausted). Phase 3 is repeated for each
file in the broadcast request, and for any other broadcast
requests associated with this distribution. Phase 3 is
complete when all responses from the Export Data
Server have been received by the Distribute Software
Server.

Phase 4

Phase 4 begins when the Distribute Software Server
sends a datagram containing the relevant release
information from the SBOM to the Distribute Software
Agent on each target processor. This phase verifies the
integrity and completeness of the release and makes it
available to be used. The bit map signifies whether any
action should be taken. There is a special file in the
release, known by name to the agent. If it is present it is
processed first and executed as a user exit script file,
allowing the OS environment to be tailored and
maintained without taking the processor off-line. If the
file did not need to be broadcast because it was available
in the current release, it is copied locally. Each file in
the new release has its checksum recalculated and
verified against that in the message. The owner and
permissions of the file are set, and a symbolic link is
made so other software can reference the file
independently from its actual name. The processing of
each file is separated by a configurable interval (for
example, 2.5 seconds) so that it does not perturb the
load on the processor. After the last file has been
successfully verified, a message is sent to the Monitor
and Control Agent to make the release available for
local incorporation. A response is sent to the Distribute
Software Server signifying that the release was complete
to this processor. When all agents have responded (or a
time-out was detected), the Distribute Software Server

sends the Monitor and Control Server a final response
signifying which processors successfully received the
release, and phase 4 is complete.

Using the New Release

Once a release has been loaded onto the processors,
the system operator selects the time when the change
from the current release to the new release will occur.
The system allows three (3) operational releases on each
processor, the intention being that the three releases
normally represent:

1. fallback release - a previous release known to be
"good"

current release - the currently executing release

future release - the release that has just been

distributed

After a new release has been distributed to the
processors, the system operator directs a portion of the
system to restart on the new release. Because there are
two independent subsystems providing air traffic
functions, using different processors and networks, there
is no danger that changed message formats in the new
release will cause conflicts. Procedurally, ATC
operations are transferred to the backup or primary
subsystem while the other is restarted into the new
release. After the set of processors that was restarted
with the new release has come back up and
demonstrated the ability to reliably perform correct
operations, ATC operations can resume on it, and the
second subsystem can be restarted with the new release.

To protect against a problematic release the
operator can at any time revert to a previous release via
the same command to restart on a different release. In
addition, if a processor fails IPL too many times
successively (for example, 3), a release independent
bootstrap program will automatically revert to the prior
release.

Implementation Details

Each operational component consists of an Ada 83
task in a set of other tasks that comprise an address
space under AIX. The basic unit of work in the system
is an event. An event may be either a message or a
timer. Messages are defined in common interface
packages available to all components that use the
interface. A message may be sent from one address
space entity to another and is directed to a given task via
a priority queue. Timers are associated with an interval
and are used to signify that it is time to do something
(not an error), or the time to do something has passed
(error). They are important because they allow the
distribution to be paced and avoid exceeding an
established limit. An event may be processed by only
one task. The amount of time that a task may work on
an event is limited. It may be extended for certain long
running operations, such as OS system calls or I/O.

© European Space Agency * Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1997ESASP.409..351D

Tasks that exceed the limit are considered to be faulty
and may be terminated with their address spaces
restarted.

Although the implementation is primarily in Ada
83, it uses some OS system calls and C functions
invoked from the Ada run-time. This is done to manage
the file systems for the releases and calculate the 32 bit
checksum associated with a file. Due to the infrequent
occurrence of distribution, the task allocated to it also
performs other functions, namely file transfer for other
commands using a connection-oriented protocol.
Although only one distribution can occur on a network
at a time, all processors on the network receive the
release at the same time. The distribution method scales
up well to larger numbers of processors.

Laboratory and test results have demonstrated that
Distribute Software meets its requirements. It has been
tested with up to 172 processors on the Token Ring and
99 on the Ethernet. Throughput for the distribution
approached the 0.456 Mbps (57 Kbytes per second)
limit and increased the LAN utilization by the expected
3 to 4.5%. The time to distribute a release varied by
release size and number of processors, ranging between
40 to 60 minutes.

The software is not very large, nor overly complex.
The approximate Source Lines Of Code (SLOC)
associated with the main distribution components are :

e Distribute Software Server -- 1500 sloc
e Distribute Software Agent -- 800 sloc
e Export Broadcast Server -- 600 sloc

e Export Broadcast Agent -- 400 sloc

The cyclomatic complexity, adjusted for project
considerations, does not exceed 10 in any given unit.

Alternative Considerations

The current SBOM-directed, broadcast distribution
technique was not the first design. The system
requirements dictated use of an OSI communications
stack on the primary network (rather than TCP/IP), and
in 1988 when the first version was designed there were
no CAS products on the market to provide this function
in such an environment. The initial implementation
used hard-coded Ada types to define the interface
between the support and operational environments. This
interface underwent constant revision as other areas of
the system were developed (new file types, permissions,
etc. were needed). This meant that the previous version
of the software already running could not understand the
latest Ada types, and had to be reloaded on the
processors manually whenever the common code had
changed the interface from this SBOM. Another
deficiency of early versions was the use of connectioned
messages, which forced a file to be transmitted over the
LAN for each processor. This is the most commonly
used technique in the CAS products surveyed. The
performance of a 90 Mbytes paced distribution repeated

357

200 times was clearly unacceptable and we switched to
the broadcast technique described above.

Today there is a richer set of CAS products that
perform distribution, although still primarily on TCP/IP.
Some products, such as DM6000 by IBM and
UNICENTER by Computer Associates, use a point-to-
point protocol and do not pace the transmission. Other
products such as Tivoli/Courier have migrated toward
paced distribution implementations.

There are still some hurdles to overcome before
general CAS products can replace the custom
distribution solution in a demanding environment such
as Air Traffic Management (ATM). For example, the
rest of the ATM computer human interface is presented
via custom format specially designed to help controllers
in safety critical situations where quick recognition of
data is imperative. They work in a nearly dark area with
special display hardware. = The Remote Graphics
Language (RGL) product is used, which allows views to
remain on-screen permanently. A CAS solution based
on X Windows degrades performance and conflicts with
the permanent view concept. It requires extensive color
customization to display well in a dark area without
making other windows difficult to see. Additionally, the
operational system needs to know distribution was
successful prior to switching execution over to the new
release. This would require custom user exits in a CAS
product. Another problem is that CAS distribution
products do not have the scope required to regulate
network trafficc. The DSR system software enforces
control when the LAN traffic is heavy to prevent
interference with critical functions.

Future Enhancements

Although the current system meets or exceeds all
current requirements, there are several aspects that if
given the chance we would improve:

e Variable sized file systems

The fielded version creates a fixed size file system
for each release regardless of the necessary size.
Because of the nature of the system, the size of
releases doesn't vary much. It is virtually the same
set of executable and data files each time. To
generalize the distribution function to other
applications we could get the size from the SBOM.
By adding up the size of each file in the SBOM that
will be distributed to a certain platform, the size of
the release specific to that platform can be
calculated and the file system created for that size.

e Distribution by function rather than processor name

The SBOM now identifies all operational
processors with the identifier "ATC" while the
support processors each have unique identifiers for
the different configurations. The result is that all
operational processors receive the exact same
release, which actually is useful given the

© European Space Agency * Provided by the NASA Astrophysics Data System

http://adsabs.harvard.edu/abs/1997ESASP.409..351D

358

maintenance strategy of the current customer which
may take a processor from one position and place it
in another role after service. A planned future
enhancement is to switch from using processor
identifiers to using functional descriptions. For
example, the off-line environment would use
"compile” and "edit" rather than "SDE" which is the
current identifier for the Software Development
Environment processor. This enhancement would
allow different size environments to combine or
split functions without changing the SBOM.

e Additional SBOM stanzas

The current source SBOM only has three types of
stanzas; imbed, source, and target. A version stanza
would be useful for systems that are expected to
store and process many prior releases. Similarly
more information about how the SBOM was created
(automated or manual), would also have some use.

e Logical LAN Partitioning

Today we do not have to partition the system for
cutover because we have two independent systems
on completely separate networks. Another future
enhancement would be the partitioning of a single
switched network via logical partitioning in the
switch itself. The higher availability and capacity
of new network hardware (i.e. dual attached FDDI)
diminish the need for a separate network during
steady state processing. Introducing switches to
these networks would allow us the ability to use a
single network during cutover and other non-steady
state processing.

e Seamless completion of distribution upon server
failure

As discussed earlier, should the Distribute Software
or Broadcast Data Server fail, the distribution
would stop and the user would be notified of its
fajlure, and would have to re-enter the command.
Instead, the backup server could assume
responsibility for completing the distribution from
the point of failure and the user would not have to
reenter the command.

e More status information upon agent failure

The current system reports failures at or near the
end of software distribution. Status on failures
could be reported in near real-time so the operator
could cancel the distribution. A cancel command
can be added to stop a software distribution that is
in progress.

Conclusions

Promulgating updates to a distributed system while
it is operational is an interesting problem. We expect
solutions to improve in ability to handle increasing
system complexity, scope and capability. Users of

distributed systems should develop an expectation that
their systems be updated without undue interference or
down time. Systems that have a large customer base,
such as the Internet, should remain available without
degradation in service, even as protocols and standards
that affect its software components change. Solving this
problem requires a delicate balance between the
function and the mission. If the distribution is too slow,
the system operator cannot install a new release in a
timely fashion. If it is too fast, the network load and
response times for critical applications suffer. Mission
critical systems cannot tolerate very much interference
without causing degradation in function. Self-describing
releases are easier to maintain once deployed, not
requiring bridge releases to understand changes in the
distribution protocols when they occur. Non-interfering
software distribution is one method to solve this
problem.

Copyrights

e Tivoli/Courier is a copyright of Tivoli Systems
e AIXis a copyright of IBM Corporation

e DMG6000 is a copyright of IBM Corporation

e UNICENTER 1is a copyright of Computer
Associates

e RGL is a copyright of Raytheon Corporation

© European Space Agency * Provided by the NASA Astroph&sics Data System

http://adsabs.harvard.edu/abs/1997ESASP.409..351D

