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ABSTRACT 

The mapping method of Wisdom [AJ, 87, 577 (1982)] is generalized to encompass all gravitational 
«-body problems with a dominant central mass. The method is used to compute the evolution of the 
outer planets for a billion years. This calculation provides independent numerical confirmation of the 
result of Sussman & Wisdom [Sei, 241, 433 (1988)] that the motion of the planet Pluto is chaotic. 

1. INTRODUCTION 

Long-term integrations are playing an increasingly im- 
portant role in investigations in dynamical astronomy. The 
reason is twofold. First, numerical exploration is an essential 
tool in the study of complex dynamical systems which can 
exhibit chaotic behavior, and there has been a growing real- 
ization of the importance of chaotic behavior in dynamical 
astronomy (see, e.g., Wisdom 1987). Second, there has been 
a phenomenal increase in the capabilities of computers 
which is bringing many important problems in dynamical 
astronomy within reach. In particular, there has recently 
been considerable interest in the long-term evolution of the 
solar system. Long-term integrations of the solar system in- 
clude the outer planet integrations of Cohen et al. (1973; 1 
Myr), Kinoshita & Nakai (1984; 5 Myr), the first Digital 
Orrery integration (Applegate et al 1986, 210 Myr), the 
LONGSTOP work (Roy etal. 1988; 100 Myr), the second 
Digital Orrery integration (Sussman & Wisdom 1988; 845 
Myr), and the inner planet integrations of Richardson & 
Walker ( 1987; 2 Myr), Applegate etal ( 1986; 3 Myr), and 
Quinn et al (1991; 3 Myr). Long-term integrations have 
already produced startling results. Sussman & Wisdom 
(1988) found numerical evidence that the motion of the 
planet Pluto is chaotic, with a remarkably short timescale for 
exponential divergence of trajectories of only 20 million 
years. This massive calculation consumed several months of 
time on the Digital Orrery, a computer built specifically for 
the job which runs at about a third the speed of a Cray 1. 
Subsequently, Laskar (1989, 1990), in another massive 
computation, found numerical evidence that the motion of 
the inner planets is also chaotic, with a divergence timescale 
of only 5 million years. However, despite the phenomenal 
progress in computer technology, computers are still too 
slow for many important applications. For example, it is 
very important to test the sensitivity of the results concern- 
ing the chaotic character of the motions of the planets to 
uncertainties in initial conditions and parameters. It is also 
important to clarify the dynamical mechanisms responsible 
for the chaotic behavior to confirm that the positive Lya- 
punov exponents are not subtle numerical artifacts. The nec- 
essary calculations and those of many other problems of cur- 
rent interest in dynamical astronomy require orders of 
magnitude greater computing power than is currently avail- 
able. Regardless of the speed of computers, better, faster al- 
gorithms for investigating the «-body problem are always 
welcome. This paper presents a new method for studying the 
long-term evolution of the «-body problem which is an order 
of magnitude faster than traditional methods of numerical 
integration. The method is a generalization of the “map- 
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ping” method introduced by Wisdom ( 1982, 1983) to study 
the motion of asteroids near the 3:1 mean-motion resonance 
with Jupiter. It is applicable to systems which are dominated 
by a large central mass such as planetary systems or satellite 
systems. 

The mapping method of Wisdom (1982,1983) was based 
on the averaging principle. It was noted that most studies of 
the long-term evolution of the «-body problem relied on the 
averaging principle in one way or another. This included 
both analytical and numerical studies. The intuition behind 
the averaging method is that rapidly oscillating terms tend to 
average out and give no net contribution to the evolution, 
while more slowly varying resonant or secular terms accu- 
mulate to give significant contributions to the evolution (see 
Arnold 1974). The intuition behind the mapping method 
was just the same: If the rapidly oscillating terms do not 
contribute significantly to the evolution then replacing them 
with other rapidly oscillating terms will have no ill effect. To 
get the mapping the rapidly oscillating terms are chosen so 
that they sum to give delta functions which can be locally 
integrated to give explicit equations specifying how the sys- 
tem changes from one step to the next. The mapping method 
was inspired by Chirikov’s use of periodic delta functions to 
derive a Hamiltonian for the standard map ( Chirikov 1979). 
The time step covered by the map is on the order of the 
period associated with the high-frequency terms. For the 
asteroid maps, the basic step was one full Jupiter period. The 
algebraic simplicity of the 3:1 map and the large step size 
combined to make it extraordinarily fast, about 1000 times 
faster than even the numerical averaging routines available 
at the time (Wisdom 1982). The great speed of the map 
allowed studies of the resonant asteroid motion over much 
longer times than were previously possible, and significant 
new phenomena were discovered. In particular, it was found 
that there was a large zone of chaotic behavior near the 3:1 
resonance and that chaotic trajectories in these zones often 
displayed a peculiar phenomenon in which the eccentricity 
could remain at relatively low values for several hundred 
thousand years and then suddenly jump to much higher val- 
ues. Over longer intervals of millions of years there were 
periods of low eccentricity behavior interspersed with bursts 
of high eccentricity behavior. These bursts in eccentricity 
were subsequently confirmed in traditional direct integra- 
tions of Newton’s equations (Wisdom 1983; Murray & Fox 
1984; Wisdom 1987), and explained perturbatively (Wis- 
dom 1985a). The high eccentricities attained by the chaotic 
trajectories help explain the formation of the 3:1 Kirkwood 
gap (Wisdom 1983), as well as provide a mechanism for 
transporting meteoritic material directly from the asteroid 
belt to Earth (Wisdom 1985b; Wetherill 1985). Murray 
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( 1986) applied the mapping method to the 2:1 and the 3:2 
resonances. Sidlichovsky & Melendo (1986) applied the 
method to the 5:2 resonance. Tittemore & Wisdom ( 1988, 
1989, 1990) have applied the method to study the tidal evo- 
lution of the Uranian satellites through numerous mean-mo- 
tion commensurabilities. The result of Tittemore & Wisdom 
(1989) that secondary resonances play a crucial role in de- 
termining the inclination of Miranda has been confirmed by 
Malhotra & Dermott ( 1990), also using the mapping meth- 
od. Tittemore (1990) and Malhotra (1990) have recently 
used the mapping method to study the tidal evolution of the 
Gallilean satellites. The mapping method has been tremen- 
dously useful. 

Unfortunately, the mapping method, as originally pre- 
sented, has significant limitations. It is based on analytic 
representations of the averaged Hamiltonian near particular 
resonances. The only known explicit analytic representa- 
tions of the averaged disturbing function are as expansions in 
the eccentricities and inclinations, or the canonical equiv- 
alents. Though the mapping method itself has no particular 
limitation to low eccentricities and inclinations, the use of a 
disturbing function which is truncated at some order in both 
eccentricity and inclination limits the applicability of any 
particular realization of the mapping method to low eccen- 
tricity and inclination. The original 3:1 mapping which in- 
cluded second-order terms in eccentricity and inclination 
(ignoring fourth-order terms) gave qualitatively correct tra- 
jectories even for eccentricities as large as 0.4. However, it 
could not be relied upon for the investigation of Earth-cross- 
ing meteoroid trajectories which have eccentricities above 
0.6 (Wisdom 1985). Murray ( 1986) also used a disturbing 
function truncated after second-order terms in the eccentric- 
ity in his study of motion near the 2:1 and the 3:2 resonances 
(ignoring third-order terms). The eccentricity must be 
much smaller at the 2:1 and the 3:2 resonances than at the 3:1 
resonance for a second-order disturbing function to accu- 
rately represent the motion. Comparison of his results with 
those obtained with unaveraged numerical integrations per- 
formed on the Digital Orrery (Wisdom 1987) shows that 
significant artifacts appear in Murray’s maps above an ec- 
centricity of only 0.1 at the 2:1 resonance, and the extent of 
the chaotic regions determined by Murray’s map is qualita- 
tively wrong for the 3:2 resonance even at low eccentricity. It 
is important to emphasize that the failure of Murray’s maps 
is not a failure of the mapping method, but rather a failure of 
the truncated disturbing function to represent the averaged 
Hamiltonian. Another important limitation of the mapping 
method, as it has been used up to the present, is that it is 
limited to the vicinity of a particular resonance or group of 
resonances, again because the analytic representation of the 
averaged disturbing function can only be made for a particu- 
lar set of commensurabilities. Thus the systematic investiga- 
tion of the tidal evolution of the Uranian satellite system 
through a sequence of mean-motion commensurabilities 
(Tittemore & Wisdom 1988, 1989, 1990) required a sepa- 
rate derivation of the map appropriate to each resonance, an 
unbelievably tedious process! 

The generalization of the mapping method presented here 
does not have these limitations. It is not limited to particular 
resonances nor is it limited to low eccentricities and inclina- 
tions. It is valid everywhere. Of course this comes at a cost. 
The new mapping method is not as fast as the original map- 
ping method, but it still offers a significant advantage over 
conventional direct numerical integration. 

The next section presents the rationale for the generalized 
mapping method. Details of the mapping for the «-body 
problem are then presented. Subsequent sections present 
some refinements of the method and show the relationship of 
the mapping method to other symplectic integration meth- 
ods. The new «-body map has been used to compute the 
evolution of the outer planets for a billion years. The result- 
ing evolution is compared to the 845 million year evolution 
of the outer planets performed on the Digital Orrery using 
standard numerical integration techniques (Sussman & 
Wisdom 1988). 

2. MAPPING METHOD 

In the original mapping method the Hamiltonian is first 
separated analytically into parts with different associated 
timescales, 

H -^Kepler ""t"" -^Orbital -^Resonant 4" Secular > ( 1 ) 

where H^Xev represents the interaction of each body with 
the central mass, H0rh{Val represents rapidly oscillating terms 
which depend on the mean longitudes of the bodies but are 
not resonant in the region of interest, H^onant represents the 
terms which have resonant combinations of mean longi- 
tudes, and -ífSecular represents the remaining terms which do 
not depend on mean longitudes. The averaging principle is 
used to argue that the terms in H0rh{tal will not significantly 
affect the long-term evolution near resonance, and can thus 
be neglected (or removed by suitable Von Zeipel transfor- 
mations). The original mapping method then added addi- 
tional terms with the orbital frequency, which sum, together 
with -ifResonant j into terms involving periodic sequences of 
Dirac delta functions. The new terms, by the averaging prin- 
ciple, also play no important role in the long-term evolution. 
The resulting map Hamiltonian is 

^Map = ^Kepler + ^Secular + 2irôl7r ( ßi )-ffResonant, ( 2 ) 
where 027r(t) represents a periodic sequence of delta func- 
tions with period 27T, 

á2ír(?)= jr ó(t-2Trn)=— ¿ cos(«í), (3) 

and fl is the mapping frequency, which is of the same order 
as the orbital frequencies. In the asteroid map, the mapping 
period was chosen to be the period of Jupiter. Hamiltonian 
(2) is only a sketch of the true mapping Hamiltonian be- 
cause in the earlier applications it was convenient to break 

Resonant into several parts, each of which was multiplied by 
its own sequence of delta functions. Those details are not 
important here. Between the times when the delta functions 
act, the Hamiltonian is just given by the first two parts, the 
Kepler part and the secular part. Provided the secular Ham- 
iltonian is truncated at second order in eccentricities and 
inclinations (ignoring fourth-order terms) Hamilton’s 
equations can be solved analytically between the delta func- 
tions. The system can also be analytically integrated across 
the delta functions. The result is an analytic expression for 
the state of the system at the end of a mapping period in 
terms of the state of the system at the beginning of the map- 
ping period. The time evolution of the system is obtained by 
iterating the mapping step. It is easily shown that the map- 
ping step is a canonical transformation or, in other words, 
that the mapping is symplectic. Again, these mappings are 
limited to particular regions in which only certain resonant 
terms are important, and to low eccentricity and inclination 
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by the truncation of both Secular and ^Resonantt0 some man- 
ageable order. 

The mappings presented in this paper are based on a 
simpler separation of the Hamiltonian for the «-body prob- 
lem: 

kicks resulting from the interaction Hamiltonian evaluated 
directly in canonical Cartesian coordinates. It is amusing 
that Cartesian coordinates appear to be the best coordinates 
to use to take full advantage of the fact that the basic motion 
is Keplerian. 

H = H, Kepler + A Interaction > (4) 3. «-BODY PROBLEM 

where again //Kepier represents the basic Keplerian motion of 
the bodies with respect to the central body, and interaction 
represents the perturbation of the bodies on one another. Of 
course, this division of the Hamiltonian is very natural and is 
the starting point for most perturbation theory. Despite this, 
few numerical integration methods take advantage of this 
division of the problem. Encke’s method makes use of the 
integrability of the Kepler problem by integrating the varia- 
tions of the planetary trajectories with respect to fixed refer- 
ence orbits. However, a serious problem with Encke’s meth- 
od is that as the system evolves new reference trajectories 
must be frequently chosen so that the variations are not too 
large. Nevertheless, Encke’s method was successfully used 
in the LONGSTOP integrations (Roy etal. 1988) to reduce 
numerical error. The symplectic «-body maps introduced 
here are quite distinct from Encke’s method and more fully 
exploit the integrability of the Kepler problem. 

A mapping Hamiltonian for the «-body problem can be 
simply obtained by adding high-frequency terms to this 
Hamiltonian so that it becomes 

-^Map ^Kepler (^^)-^Interaction * (^) 
More refined versions of the mapping Hamiltonian will be 
presented in subsequent sections. In all of these mapping 
Hamiltonians high-frequency terms are introduced without 
first removing terms of corresponding frequency from the 
Hamiltonian. Nevertheless, by the averaging principle, the 
new high-frequency terms are unimportant. Our new «-body 
maps then consist of a sequence of steps alternating pure 
Keplerian evolution of the individual bodies between the del- 
ta functions, with periodic interaction kicks derived from 
integrating the whole system across the delta functions. The 
basic idea is remarkably simple. 

The construction of an efficient mapping for any problem 
rests on the ability to separate the Hamiltonian into parts 
which are themselves not only integrable, but efficiently 
computable. This looks grim at first sight for this problem. 
Keplerian motion is integrable, but the solution is naturally 
expressed only in terms of Keplerian orbital elements or one 
of the canonical equivalents such as the Delaunay variables. 
The description of the gravitational interaction of two bodies 
in terms of Keplerian orbital elements leads again to the 
expansion of the disturbing function with all the attendant 
complications and limitations. A map of this form would be 
useless. However, there is no particular reason to insist on 
one single set of coordinates. In fact, since the evolution for 
each part of the Hamiltonian is computed separately, each 
can be evaluated in the coordinates most suitable for that 
part: the Kepler orbits can be advanced in canonical Kepler- 
ian elements, and the interactions can be evaluated in ca- 
nonical Cartesian coordinates, with of course the appropri- 
ate intermediate canonical transformations. There is still a 
better solution. The Kepler orbits can be advanced directly 
in canonical Cartesian coordinates using Gauss’/and g func- 
tions (see Danby 1988) without ever having to convert to 
Keplerian elements. This can be naturally combined with 

The Hamiltonian for the «-body problem is 

H=1 
P, 

o 2m i 
_ ^ Gm^j (6) 

In order to make the «-body maps this must be separated 
into a Keplerian Hamiltonian and an interaction Hamilto- 
nian. A Hamiltonian is Keplerian if it can be written in the 
form 

= (7) 
2m r 

or as a sum of such forms. Unfortunately, the «-body Hamil- 
tonian is not immediately in the desired form. For the two- 
body problem, the separation of the Hamiltonian into a 
Kepler Hamiltonian and a noninteracting center of mass 
Hamiltonian is achieved by transforming to relative coordi- 
nates and center of mass coordinates. For the «-body prob- 
lem, it is easy to show that a similar transformation to co- 
ordinates relative to the central mass plus center of mass 
coordinates does not produce a Hamiltonian which is a sum 
of noninteracting planetary Kepler Hamiltonians, center of 
mass Hamiltonian, and an interaction Hamiltonian. The 
problem is that with this simple choice of relative coordi- 
nates the kinetic energy is no longer a diagonal sum of 
squares of the new momenta. Of course, the choice of vari- 
ables which accomplishes the desired transformation of the 
«-body Hamiltonian is well known, and is just the Jacobi 
coordinates (see Plummer 1960). The Jacobi coordinates 
can be derived by writing them as a general linear contact 
transformation, then requiring that the kinetic energy re- 
main a diagonal sum of squares of the new momenta, and 
also that the new Hamiltonian be cyclic in the center of mass 
coordinate. The latter condition means that all the distances 
between the bodies can be written in terms of « — 1 of the 
new “relative” coordinates. Despite this formal motivation, 
the resulting Jacobi coordinates turn out to have a simple 
interpretation. We take the first coordinate to be the position 
of the center of mass. The first relative coordinate is just the 
position of the first planet relative to the central mass. The 
second relative coordinate is the position of the second plan- 
et relative to the center of mass of the central mass and the 
first planet. In general, the z’th relative coordinate is the posi- 
tion of the zth planet relative to the center of mass of the 
central mass and the planets with lower indices. It is not 
necessary, but increasing indices are usually taken to corre- 
spond to increasing semimajor axes. 

Denoting the Jacobi coordinates by a prime, the first Ja- 
cobi coordinate is the center of mass. The remaining 
« — 1 Jacobi coordinates are (0 < / < «) 

X • = X; — X/ _ J , (8) 

where X, denotes the center of mass of bodies with indices up 
to i. 

x,. =Lyw,x.( (9) 
Vi j=<> 
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with the definition 

Vi = iü Mi- 0°) 

In terms of the X, , the first Jacobi coordinate is simply 
Xq = X„ _ !, the center of mass of the whole system. By vir- 
tue of the requirement that the new Hamiltonian is a diag- 
onal sum of the squares of the new momenta, the momenta 
conjugate to the x' have the familiar form p' = v', where 
v- is the time derivative of x -. The new mass factors are given 
by m'i =rji_l ra,/?/,, for 0 < / < « and m'0 = rjn l = M, the 
total mass of the system. It is only a matter of algebra to show 
that in terms of these Jacobi coordinates the Hamiltonian for 
the «-body problem becomes 

H_Po2 | "y1 P',2 "ÿ1 Gm^o Gm^j 
2M ,-ri 2m; ¡=1 r0 oTT^j 

(ID 

where = Hx, —Xj ||, the distance between bodies i and j. 
By construction, does not depend on x¿, thus the total 
momentum pó is an integral of the motion. As expected, the 
center of mass moves as a free particle. Hereinafter the cen- 
ter of mass contribution to the Hamiltonian will be omitted. 
Adding and subtracting the quantity 

1 

À 
(12) 

where r' = ||x'|| the Hamiltonian becomes 

(13) 
The second sum, which we may call the indirect perturba- 
tion, contains differences of nearly equal quantities and is 
actually of the same order as the direct interaction terms. 
The Hamiltonian now separates into a sum of « — 1 nonin- 
teracting Kepler Hamiltonians, and a smaller interaction 
Hamiltonian, as desired: 

H = H« Kepler i ±± Interaction > 
with 

" - 1 / p]1 Gm¡m0 \ 
——) 

and 

„ _ V ^ 1 \ V Gmi‘ 
-^Interaction GfTlffflQ Í ^ J i= 1 V/ riO / 0<i< j fij 

(14) 

(15) 

Gmiirij 

(16) 
It is common to expand the interaction Hamiltonian in 

terms of the small differences between the Jacobi coordi- 
nates and the heliocentric Cartesian coordinates, and keep 
only the first-order corrections in the ratio of the planetary 
masses to the mass of the central body. In this approxima- 
tion the interaction Hamiltonian becomes 

a _ ^ (Gm¡mj Gm¡mjX¡‘x' \ ^Interaction \ . .3 I 
0<i< j \ y [j / 

+ o(mJ), (17) 

with r'j = ||x- — xjH. We have found though that maps 
based on the exact Hamiltonian are nearly as efficient as 
those based on this approximate Hamiltonian, so the ex- 
panded form will not be considered further. 

An important special case of the «-body problem is ob- 
tained if some of the bodies are given infinitesimal mass. 
These “test particles” are perturbed by the massive planets, 
but do not perturb them in return. The restricted three-body 
problem and all its variations such as the planar elliptic re- 
stricted three-body problem fall in this category. If the test 
particle is given the first relative Jacobi index, below those of 
the massive particles, then the test particle interaction Ham- 
iltonian is given exactly by 

GmjX^x^S 

fjo / 
(18) 

where x^ = x, — x0, the vector from the central mass to 
body j. There are several ways of deriving this. The most 
straightforward method is to expand the exact interaction 
Hamiltonian in the differences between the Jacobi coordi- 
nates and heliocentric Cartesian coordinates, then take the 
appropriate limit as the test particle mass goes to zero. There 
are several alternate routes. The most intuitive is to note that 
the acceleration of the vector from the central mass to the 
test particle is the difference of the direct acceleration of the 
test particle and the acceleration of the central mass due to 
the gravitational attraction of the other massive bodies. This 
immediately gives the same test particle interaction Hamil- 
tonian. If the test particle is given any other Jacobi index the 
interaction Hamiltonian is more complicated, and will not 
be given here. Though the equations of motion are simpler if 
the test particle is given a Jacobi index below the massive 
bodies, the orbital elements are “cleaner” if the test particle 
is given the natural Jacobi index in order of increasing semi- 
major axis along with the massive planets (see Sussman & 
Wisdom 1988 ). The resulting orbital elements are then freed 
of the relatively rapid oscillations due to the motion of the 
central mass induced by those massive planets interior to the 
test particle. 

4. «-BODY MAPS 

A simple mapping Hamiltonian for the «-body problem is 
then just Hamiltonian ( 5 ). It involves two distinct opera- 
tions: advancing the Kepler orbits between the delta func- 
tions, and integrating the system across the delta functions. 
The more refined «-body maps to be presented later use the 
same components. 

Constructing an efficient map depends on being able to 
rapidly advance Keplerian orbits. A summary of methods 
for solving this classic initial value problem is given in Danby 
( 1988 ). A key element in the solutions is that the motion can 
be determined without explicitly determining the orienta- 
tion of the orbit plane. In particular, since two vectors deter- 
mine a plane, the position and velocity at any time can be 
written as a time-dependent linear combination of the posi- 
tion and velocity at the initial epoch 

x(0 =f(t)x(t0) +g(t)\(t0) (19) 
and consequently 

v(0 =/(OxUo) +gU)v(i0)> (20) 
using Gauss’ famous/and g functions. Refer to Danby for a 
derivation of the equations which determine / and g, and 
their time derivatives. An important step in the determina- 
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tion of f and g is the calculation of the change in the eccentric 
anomaly, A2L In this paper we concentrate on problems for 
which the time step is a fraction of an orbit period. For this 
case, it is efficient to determine kE through the solution of 
the difference form of Kepler’s equation 

AM = «Ai = LE — e cos E0 sin LE 

+ c sin E'oC 1 — cos AE'), (21) 
where e is the orbital eccentricity, Mis the mean anomaly, n 
is the mean motion, and E0 is the initial eccentric anomaly. A 
closed-form analytic solution is not known, but the solution 
can be found through a variety of iterative procedures. 
Danby recommends a generalization of Halley’s iterative 
method with quartic convergence, and a particular initial 
guess. (Watch out though, there is a typo in Danby’s code on 
p. 167 which reduces its convergence to cubic. Also, Danby’s 
convergence criterion is not strict enough. ) For problems in 
which the orbits may become hyperbolic, a solution of the 
initial value problem in terms of universal variables is prob- 
ably preferred. 

The integration of the system across a delta function is 
trivially accomplished in canonical Cartesian coordinates 
since in this system the interaction Hamiltonian depends 
only on the coordinates. The coordinates are unchanged 
since the interaction Hamiltonian does not depend on the 
momenta. The momenta each receive a kick proportional to 
the generalized force, which is derived in the usual way as 
minus the derivative of the interaction Hamiltonian with 
respect to the conjugate coordinate. The differentiation is 
straightforward and will not be presented here. We just men- 
tion a couple of key points. Note that with an appropriate 
rearrangement of terms the direct contributions to all of the 
disturbing accelerations can be evaluated in o(n2) opera- 
tions, where n is the number of planets, and all of the indirect 
contributions can be evaluated in o{n) operations. Also, 
some contributions to the forces arise as small differences of 
nearly equal quantities. The numerical inaccuracies which 
would be incurred by a straightforward evaluation of these 
expressions can be avoided by using the same trick used to 
avoid a similar difficulty encountered in Encke’s method 
(see Danby 1988 ). Closed-form expressions for this trick are 
given by Battin ( 1987). 

5. REFINEMENT OF THE MAPPING METHOD 

There are some general refinements to the mapping meth- 
od that can be made. We consider Hamiltonians of the gen- 
eral form 

H = H0 + HV (22) 
Both Hq and Hx may depend on all of the coordinates and 
momenta, though to make a mapping it is necessary that 
each part in the absence of the other part be integrable. In 
this paper attention is focused on problems for which 

The basic idea behind the refinement of the map- 
ping method is that rather than using a single delta function 
per mapping period, one mapping period can consist of a 
series of delta functions with possibly different amplitudes 
and various phases, with the amplitudes and phases chosen 
so that the mapping will have better properties. The property 
to optimize is left to our discretion. There are two obvious 
choices. One choice is to optimize the “order” of agreement 
of the Taylor series of the actual solution in time with one 
step of the mapping, treating the mapping as if it were a 
symplectic numerical integration algorithm. The other 
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choice is to optimize the agreement of the mapping Hamilto- 
nian with the true Hamiltonian, making the differences have 
as high a frequency as possible so that the average effect of 
the differences will be as small as possible. Curiously, the two 
choices are not equivalent. Since the averaging principle is at 
the core of our reasoning, the second choice, to make the 
map Hamiltonian agree as much as possible with the true 
Hamiltonian, will be considered first. 

High-frequency terms are added so that the correspond- 
ing mapping Hamiltonian has the form 

^MaP =H0 + <S>{mHli (23) 
where 

<I>(i)=2fl- £ a,82„{t — lirdi). (24) 
/ = 0 

There are N delta functions per mapping period, with ampli- 
tudes a,, and phases di which are chosen in the interval 0<^ 
< 1. Written as a Fourier series, 

N- 1 00 
<!>(£)= ^ <2/ cos[«(i — 2^)] (25) 

z = 0 rt = - oo 

= ^ Añ cos(nt) + ^ Bn sin(nt), (26) 
n = — oo n = — <x> 

where 
N- 1 

An = ^ al cos(lirnd, ) (27) 
2 = 0 

and 
N — 1 

Bn = ^ a¿ sinilmtdi). (28) 
2 = 0 

The coefficients and^rt ofeachofthecos(«0 and sin(«¿) 
terms provide constraint equations for the and dt. First, 
the average of <I>(0 over one mapping period must be unity 
for the average of the mapping Hamiltonian over a mapping 
period to equal the true Hamiltonian. The average is given 
by the « = 0 equation, which implies simply 

A0 = N^a¡ = \. (29) 
2 = 0 

For the two Hamiltonians to agree the coefficients of all the 
terms involving the mapping frequency must be zero. This 
gives the set of equations which determine the coefficients 
for each «ÿ^O: 

N- 1 
An = ^ ai cos(2irnd¿) =0, (30) 

2 = 0 
N- 1 

Bn — ^ di sinilirndi) =0. (31) 
2 = 0 

Note that if the two coefficient equations for some « > 0 are 
satisfied, the corresponding two coefficient equations for 
« < 0 are also automatically satisfied. We would like to satis- 
fy as many of the coefficient equations as is possible, begin- 
ning with those of lowest frequency (smallest |«|). For a 
given N there are 2A constants to be determined. Thus, it is 
expected that these IN constants can be chosen to satisfy at 
least IN coefficient equations. There is only a single coeffi- 
cient equation for n = 0. Thus it should be possible to make 
the coefficients up to « = A — 1 equal to zero, plus one of the 
two coefficients for « = A. Of course, just making one coeffi- 
cient equal to zero is not very useful since other terms of that 
frequency will remain. 
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Consider the N = 1 map first. In this case there is only a 
single delta function. The coefficient a0 = 1, and no useful 
constraint is placed on d0. In the W = 2 map, it is easy to see 
that the two a¿ must be equal, and consequently a¿ = 1/2, 
and the dt must differ by 1/2. No useful constraint is placed 
on the absolute phase. For general N, a solution of the coeffi- 
cient equations is that the a, = \/N and the d, are evenly 
spaced with separation l/N. No useful constraint is placed 
on the absolute phases by the coefficient equations, since the 
one remaining constant cannot simultaneously satisfy both 
of the next set of coefficient equations for « = TV. It can be 
easily shown that this solution does more than satisfy the 
2N — 1 equations which determined the coefficients, but in 
fact it satisfies all coefficient equations for all n that are not 
multiples of N. It seems likely that this is the only solution to 
the coefficient equations, though we have not been able to 
demonstrate this. The solution just mentioned is very simple 
indeed; it consists of N evenly spaced delta functions, all of 
equal amplitude 1/TV. Actually, this is nothing but the origi- 
nal single periodic delta function with a smaller mapping 
period. 

6. HIGHER-ORDER MAPPINGS 

Another possible approach to refine the mapping method 
is to use the flexibility introduced through the 2TV constants 
a, and dt in <I>(i) to match the Taylor series of a mapping 
step to that of the actual solution. The mapping could then 
be viewed as a symplectic integrator. To match the Taylor 
series by brute force to high-order turns out to be a formida- 
ble task, even with the aid of computer algebra. There is, 
however, a more abstract representation of the generalized 
mapping method that makes the problem of the determina- 
tion of the constants more tractable. 

Consider in more detail the consequences of the mapping 
Hamiltonian 

HMap=H0 + <P(üt)Hv (32) 

Again, both H0 and H1 may depend on all the coordinates 
and momenta. Between the times when the delta functions 
act the time evolution of the system is governed solely by H0. 
On the other hand, the evolution across the delta functions is 
determined solely by even though the coordinates and 
momenta which are being affected may also appear in H0. 
This may be seen through a simple limit process in which the 
delta function Ittô( fit) is represented as the limit as A 0 of 
a step function which is nonzero in the interval 0 < t < A with 
constant magnitude Irr/Cl A. Taylor expanding the solution 
across the delta function, including terms due to both H0 and 
Hu and then taking the limit of the result as A goes to zero, it 
is easily shown that the terms coming from H0 do not con- 
tribute. In fact, it can also be seen that the evolution of the 
system through the delta function is the same as if the system 
evolved solely according to üTj for a time At = Itt/CI. The 
evolution through the generalized map with Hl multiplied 
by a sequence of weighted delta functions of amplitudes a, at 
times d¿At can then be interpreted in the following way. 
First, the system evolves according to H0 for a time d0At, 
then according to H1 for a time a0At, then according to H0 
for a time (dl — d0) At up to the next delta function, then 
according to Hl for a time ¿Zj Ai, and so on until after the last 
delta function, whereupon the system evolves to the end 
of the mapping period according to H0 for a time 
(\-dN7l)At. 

Now, it is well known that the Taylor series of a function 

can be written formally as an exponential 

/(i0 + Ai) = exp^Ai-j-V(t) I . (33) 
\ dt/ I f = r0 

Also, the total time derivative of a function of the phase 
space coordinates (the n coordinates and n momenta for an 
n degree of freedom system), and possibly also the time, can 
be written in terms of a Poisson bracket with the Hamilto- 
nian which governs the time evolution of the system 

— = [f,H] +^. 
dt dt 

(34) 

Let Lh represent the Poisson bracket operator 
LHf= [ f,H ], then the time evolution of a function which 
depends on time only through the phase space coordinates 
can be written 

f{x,p) I + AI = eA,LHf(x,p) I, = ,o . (35) 

In particular, this is true for the individual coordinate func- 
tions 

x I . „ . (36) 
Furthermore, for a function which depends on time only 
through the phase space coordinates, the time-evolved func- 
tion must equal the function of the time-evolved coordinates 
and momenta 

e*LHf{x,p)\,= to =f(eA,L"x,etl,L"p) | (=,o . (37) 

Of course these are nothing other than the basic equations 
governing Lie transformations (see, e.g., Steinberg 1988). 

The operator that generates Taylor series for the general- 
ized map can then be formally written 

^bNAtLH t ' ^axÉ^tLH ^b^tLHa^aüùt.tLH^b0à.tLHi (38) 

where the 6, = dt — di_l, with b0 = d0 and 
bN = 1 — dN_l. Of course the exponentials cannot be sim- 
ply combined since the operators LH and LHi do not com- 
mute. (If the operators commuted, the calculation of the 
time evolution would be trivial. ) For time evolution which is 
governed by the true Hamiltonian the operator that gener- 
ates Taylor series is just 

ç^tLH  çÙLt(LHt+Lh) (39) 

Equating these two expressions up to some order in At gives 
constraint equations which must be satisfied by the a, and 6,. 
The problem of determining the constants reduces to a prob- 
lem in the algebra of exponentials of noncommuting opera- 
tors. Though in principle some special property of and 
Lh might be used to simplify the determination of the con- 
stants for a particular Hamiltonian, the solutions to date 
have treated them simply as general noncommuting opera- 
tors. Replacing AtLHo by B and AtLH{ by A, the coefficients 
are determined by requiring 

e* + B = eb (40) 

be satisfied to a specified order in the products of the non- 
commuting operators A and B. 

The solution of these equations to second order is simply 
achieved for TV = \\b0 = bx = 1/2, and aQ=\. The result is 
the “generalized leap frog”: a half step following fol- 
lowed by successive whole steps alternately following Hx and 
H0f ending with a half step of HQ. Note that in this case, the 
delta functions are all equally spaced in time. Thus the agree- 
ment of the mapping Hamiltonian with the true Hamilto- 
nian, as discussed in the previous section, is maximally re- 
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tained. The previously noted extra freedom of the phase of 
the evenly spaced delta functions is being used to make the 
map accurate to second order, at no extra cost. 

The solution of these equations to fourth order is possible 
with N=3. This has been independently accomplished by 
Forest & Ruth ( 1990) and Yoshida ( 1990), also using Eq. 
(40). The solution is the same as that found in a more re- 
stricted formalism by Candy & Rozmus ( 1990) and earlier 
by Neri (1988). Yoshida (1990) has found sixth- and 
eighth-order solutions for iV= 7 and N = 15, respectively. 
Forest ( 1990) has also obtained sixth-order solutions. These 
authors were interested in extending the symplectic integra- 
tion method of Ruth (1983) to higher order. Our formula- 
tion of the coefficient equations in terms of exponentials of 
noncommuting operators had a different motivation and 
was carried out before we became aware of the work of For- 
est & Ruth ( 1990) and Yoshida ( 1990). 

It is interesting to note that in all the known solutions of 
the coefficient equations some of the 6, are negative, except 
the first- and second-order methods (the generalized leap 
frog). It appears that to get higher order it is necessary to 
take some steps backward in time. However, even though the 
coefficients solve the coefficient equations, these negative 
steps cannot simply be represented in the scalar Hamiltonian 
(32) from which the coefficient equations were derived, 
since in the Hamiltonian only the time at which the delta 
functions act is specified and not any additional order of 
application. A Hamiltonian could be written for the higher- 
order maps as 

of losing, to some extent, our original motivation which con- 
nects a mapping Hamiltonian via the averaging principle to 
the true Hamiltonian, particularly for a system for which 
H0^>HV Nevertheless, either of these alternatives can be 
used with the «-body mapping components described here. 

The «-body mapping is then a composition of individual 
Kepler steps for each of the planets with kicks derived from 
the interaction Hamiltonian, each appropriately weighted to 
form either the generalized leap-frog version of the map or a 
higher-order version of the map. Note that since each of the 
Keplerian orbits is advanced independently of all the others, 
they can be advanced in parallel. 

7. OTHER SYMPLECTIC INTEGRATORS 

It is instructive to compare the generalized maps de- 
scribed here with other symplectic integrators. The symplec- 
tic integration scheme of Ruth (1983) (see also de Vogelaere 
1956) is based on a time step given in terms of a mixed vari- 
able generating function, 

F(x,pf) =xp' +S(x,p'), (42) 
where the primed variables are the new variables after the 
time step. Nothing here depends on the dimension of the 
phase space, so for simplicity we use a single degree of free- 
dom. Choosing S(x,p') = ktH(x,p'), this generating func- 
tion gives the canonical transformation of variables 

dF , , KBH(x,p') /’ = — =/’ +Ai (43) 
OX ox 

;/Map + (4i) 

where and are similar to <ï>(0, but with differ- 
ent coefficients. Now between the delta functions the Hamil- 
tonian is zero and there is no evolution. The higher-order 
maps can be generated if the delta functions for ^>0(0 and 
<!>! (0 are interleaved with the proper amplitudes. For Ham- 
iltonians which have been separated into two parts H0 and 
Hi of comparable magnitude, this seems to be a satisfactory 
solution, though it is not clear that anything is gained by 
representing the maps in this manner. On the other hand, for 
Hamiltonians for which Ff0 is much larger than a map- 
ping Hamiltonian which introduces high frequencies pro- 
portional to H0 seems like a bad idea. The first corrections to 
the evolution as deduced by, for example, Von Zeipel trans- 
formations will be large. Perhaps there is a better way to 
represent the Hamiltonian for the higher-order methods. An 
interesting possibility is to search for higher-order methods 
using Hamiltonian (32), but with the added constraint that 
all the b¿ be positive. We have attempted to find two and 
three delta function maps of third order with all positive 6, , 
but were unsuccessful. It is important to determine whether 
or not such solutions exist in general. 

At present then, there are two options available: ( 1 ) If the 
existence of an explicit Hamiltonian is desired, and the 
agreement of the map Hamiltonian with the true Hamilto- 
nian is to be maximized, then the best solution is to take all 
the delta functions to be of equal amplitude and evenly 
spaced. Without any degradation of the agreement of the 
two Hamiltonians, the map can be made second order by 
choosing the phase of the delta functions so that the calcula- 
tion begins and ends with a half step of Fl0. ( 2 ) If the order of 
the mapping is to be increased beyond second order, any of a 
number of known solutions of the coefficient equations can 
be used. Apparently though, higher order comes at the cost 

, dF . x^dH(x,p') ,AA. x = = x + ^ . (44) 
dp' dp' 

This step is canonical and only approximates the evolution 
of the system under H{x,p) to first order in Ai. Higher-order 
generating functions have been derived by Ruth (1983), 
Menyuk (1984), and Channel & Scovel ( 1988). In general, 
the transformation from x and p to x' and p' is only given 
implicitly, since it is based on a mixed variable generating 
function. In the special case where the Hamiltonian can be 
written in the form 

H{x,p) = T{p) + V{x), (45) 

the transformation can be written explicitly: 

P' = p — At dVM 
dx 

(46) 

followed by 

x' = x + kt . (47) 
dp' 
Ruth (1983) found higher-order symplectic integrators 
both by using higher-order generating functions for the step, 
and by composing low-order steps and adjusting constants 
to achieve higher order. The latter method is followed by 
Neri ( 1988 ) and Candy & Rozmus ( 1990) for Hamiltonians 
of the form of Hamiltonian (45 ). Forest & Ruth ( 1990) also 
describe their method in terms of a composition of steps 
achieved through a mixed variable generating function. 

The mapping method has been described in terms of the 
averaging method which originally motivated it, and imple- 
mented in terms of mapping Hamiltonians containing peri- 
odic sequences of delta functions. This is quite different from 
the generating function description of the symplectic inte- 
grators following Ruth (1983). Nevertheless, mappings de- 
rived along the lines Wisdom ( 1982) are closely related to 
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the symplectic integration methods derived from Ruth 
(1983). In fact, for Hamiltonians of the form of Hamilto- 
nian (45), they are identical. Consider a simple mapping 
Hamiltonian for Hamiltonian (45) 

not clear to us whether or not a system Hamiltonian can be 
written for the implicit Ruth maps. 

8. SIMPLER «-BODY MAPS 
H^ = T(p)+2wô2AmV{q). 

Integrating across the delta function gives 

p‘ =p-te dV\x) 
dx 

(48) 

(49) 

with Ai = 27r/n. Then integrating between the delta func- 
tions gives 

x'=x + Ai^£X (50) 
dp' 

These are the same equations as those obtained with the 
mixed variable generating function. However, in the more 
general case in which the Ruth method will require the solu- 
tion of implicit equations the mapping method presented 
here will give explicit equations. The two methods are then 
not equivalent. 

It is clear that the mapping method based on periodic del- 
ta functions can also be thought of as a method of symplectic 
integration. It is sometimes the same as that derived from a 
generating function and sometimes distinct. In a sense, 
though, the mapping based on delta functions is more clearly 
related to the original system than is the symplectic integra- 
tion step based on generating functions. In the Ruth school, 
the basic idea is that a finite difference method that is exactly 
canonical may be subject to fewer artifacts than a finite dif- 
ference method that is not canonical. For instance, a noncan- 
onical finite difference scheme may have attractors, in con- 
tradiction to the well-known fact that Hamiltonian systems 
do not have attractors. The finite difference scheme then has 
a possible behavior that cannot belong to the real system. 
The Ruth integrators are symplectic as the actual system 
they are modeling is symplectic, and for small enough time 
step the error in the step becomes arbitrarily small, but 
whether the symplectic integrator should give a good ap- 
proximation to the long-term dynamics is not clear. This 
point was reiterated by Zhong & Marsden (1988). One 
method of deriving these symplectic integrators (see Forest 
& Ruth 1990) is to make a chain of canonical transforma- 
tions as described above and then require that the Hamilto- 
nian, when expressed in terms of the new variables, matches 
the actual Hamiltonian to some order. Since the match is not 
perfect, each individual step of a symplectic integrator 
makes some error in the Hamiltonian. There is no guarantee, 
nor any reason to expect, that the repeated composition of 
such steps will not lead further and further from the true 
Hamiltonian, even though the composition is canonical. 
However, this catastrophe does not seem to happen, though 
the reason remains unclear. On the other hand, the map- 
pings derived from Wisdom (1982) are explicitly derived 
from a Hamiltonian. The differences between the true Ham- 
iltonian and the mapping Hamiltonian are arguably unim- 
portant to the long-term behavior on the basis of the averag- 
ing principle. Furthermore, the differences are explicit. In 
some cases it is possible to derive a correction from mapping 
variables to true variables by eliminating the extraneous 
high-frequency terms by Von Zeipel transformations (e.g., 
Tittemore & Wisdom 1988). The basic Ruth step is canoni- 
cal, but it is given in terms of a generating function, not as the 
time evolution of a Hamiltonian [though Menyuk (1984) 
calls the generating function a “discrete Hamiltonian” ]. It is 

There is a simpler way to get symplectic maps for the n- 
body problem. Note that the basic «-body Hamiltonian (6) 
is in the form of Hamiltonian (45 ). Thus a particularly sim- 
ple map for the «-body problem can be obtained by letting H0 
be the kinetic energy and Hl be the potential energy. Then 
any of the mapping Hamiltonians we have discussed can be 
used. In particular, high-order mappings can be made with 
Hamiltonian (41). The second-order form of the map, the 
generalized leap frog, becomes in this case simply the ordi- 
nary leap-frog integrator. 

There are two obvious disadvantages of these simple «- 
body maps. The most severe is that the basic Keplerian mo- 
tion of the orbits is not taken into account. Thus the number 
of steps must be large enough to stably and accurately nego- 
tiate each passage of the planet around the Sun. A second 
disadvantage is that the motion of the central mass must also 
be integrated. It should be noted that Cowell’s form of the 
equations of motion, which are written in terms of simple 
relative coordinates with respect to the central mass (see 
Brouwer & Clemence 1961 ), are not in Hamiltonian form. A 
map naively based on them would not have the desired prop- 
erty of being symplectic. 

Higher-order maps of this simple form have already been 
applied to the «-body problem by Gladman & Duncan 
(1990) and Kinoshita et al. (1990). Note that in both of 
these applications the mappings are used in what may be 
called the “qualitative” mode of operation. The step size is 
relatively large and the truncation error is much larger than 
the machine precision. Of course, this may not matter for 
qualitative investigations, since the truncation error does not 
seem to accumulate in a bad way for these symplectic maps, 
and the energy error is observed to oscillate, at least locally. 
Gladman and Duncan take 300 steps per orbit; Kinoshita et 
al. take about 600 steps per orbit. The relative error in the 
value of the Hamiltonian is of order 10 - 9 for Kinoshita et 
al, and somewhat larger in the other study. In both cases the 
error is much larger than the available precision of the ma- 
chine and is obviously dominated by truncation error. The 
simple fourth-order symplectic integrators used in these pa- 
pers evaluate the accelerations three times per step. Thus 
they require about 2000 function evaluations per orbit to 
achieve a local relative energy error of 10-9. These errors 
should be compared with the errors in a conventional nu- 
merical integration. For example, for the twelfth-order 
Stormer predictor, which was used in the Digital Orrery cal- 
culations, the truncation error is of order the machine preci- 
sion with around 100 steps per orbit. The Stormer predictor 
evaluates the accelerations only once per step. Even after 
nearly a billion years the relative energy error in the Digital 
Orrery integration was only of order 10 “10, and locally the 
variation of the relative energy is much smaller. Even used in 
the qualitative mode of operation the simple symplectic inte- 
grators do not appear to be competitive with traditional inte- 
grators. 

Consider the use of the simple «-body maps in a “high 
accuracy” mode of operation in which the step size is chosen 
to be small enough so that the truncation error is of order the 
machine precision. Assuming the truncation error is propor- 
tional to the fifth power of the step size for these fourth-order 
methods, for the relative energy error to reach machine pre- 
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cisión (which we take to be about 10-16) requires about 
45 000 function evaluations per orbit. Of course, higher-or- 
der methods need to take significantly fewer steps per orbit. 
Suppose the relative energy error from truncation can be 
written A = C(/z /N)°+ where h is the step size divided by 
the orbital period, o is the order, Nis the number of function 
evaluations per step, and C is an error constant. We presume 
that the error constant in this form is comparable for all of 
the higher-order methods; the factor of W is just a guess, and 
works in favor of the higher-order methods. Using this esti- 
mate we find that even for the eighth-order method of Yo- 
shida (with 15 function evaluations per step), achieving a 
relative energy error of order the machine precision requires 
400 function evaluations per orbit. Thus even the high-order 
versions of the simple «-body maps may still be inefficient 
compared to traditional high accuracy integrators. Of 
course, the relative inefficiency may be outweighed by a bet- 
ter long-term growth of error. To our knowledge the long- 
term growth of error for the simple symplectic «-body inte- 
grators has not yet been carefully examined, particularly in 
the “high accuracy” mode of operation where the truncation 
error is of order the machine precision. 

Consider in the same manner the possibility of using the «- 
body maps described in this paper in the “high accuracy” 
mode. From a numerical integration point of view, the basic 
difference between these methods and the simple methods 
just described is that the error constant in these new maps 
may be expected to be smaller by about the ratio of the plan- 
etary masses to the central mass fi. For our solar system, /z is 
about 10“3. The number of steps per orbit required to 
achieve the same truncation error as the simple maps is 
smaller by a factor of ju~ 1/(0+l). For a fourth-order method 
with ytz = 10 - 3, this factor is only about 4. For the eighth- 
order method, it is about 2. Considering the fact that the 
steps in the Kepler-based «-body maps are a little more ex- 
pensive than those in the simple «-body maps, it is not clear 
that any advantage is gained by using the maps presented 
here over the simpler maps, at least in the “high accuracy” 
mode of operation. However, there may be an advantage to 
using the Kepler-based maps for orbits with high eccentric- 
ity. In this case, the simple «-body maps must take many 
more steps per orbit to stably and accurately execute the 
orbit, since the basic Kepler motion must be integrated as 
well. On the other hand, the «-body maps presented in this 
paper exactly represent a pure Kepler orbit at any eccentric- 
ity. Tests in the circular and elliptic restricted problems indi- 
cate the Kepler based «-body maps suffer no significant loss 
of stability or accuracy at high eccentricity. In this case there 
may be a significant advantage in using them over the simple 
maps even in the “high accuracy” mode. 

On the other hand, consider the use of the «-body maps 
introduced in this paper in the “qualitative” mode of oper- 
ation. Typically, efficient traditional integrators take on the 
order of 100 steps per orbit. We have found that in solar 
system integrations the qualitative behavior is reliably repro- 
duced with as few as ten steps per orbit. Such a small number 
of steps per orbit is stable here because the Kepler motion is 
represented exactly and does not have to be rediscovered 
each orbit. The reduction in the number of function evalua- 
tions by a factor of 10 accounts roughly for the order of 
magnitude greater speed of the new mapping method over 
traditional integrators. The new «-body maps are the clear 
winners for qualitative studies. 

Of course, the relative merits of the various methods in the 

1536 

two different modes of operation should be studied more 
thoroughly to check the estimates given here. 

9. THE OUTER PLANETS FOR A BILLION YEARS 

We have carried out numerous tests of the new «-body 
maps. First, a number of surfaces of section for the circular 
restricted three-body problem were computed with the new 
map and compared to sections computed with the conven- 
tional Bulirsch-Stoer numerical integration algorithm. The 
agreement was excellent and provided valuable initial expe- 
rience with the new maps. These tests demonstrated the reli- 
ability and efficiency of the map at high eccentricity. The «- 
body maps have also been implemented for the planar 
elliptic restricted three-body problem. The numerical inte- 
grations reported in Wisdom (1983), which also used the 
conventional Bulirsch-Stoer algorithm, were all repeated 
with the map, with particular attention to whether the map 
would give the correct diagnosis of whether the trajectory 
was chaotic or quasiperiodic. In every case, the map agreed 
with the earlier results. Of course, the jumps in eccentricity 
were also recovered. Note that the codes for the various ver- 
sions of the restricted three-body problem can be written to 
take advantage of the known fixed orbit of the two massive 
bodies. Rather than present these initial tests in detail, we 
present a much more stringent test. We have used the map to 
compute the evolution of the outer planets, including Pluto 
as a test particle, for about 1.1 billion years. For this problem 
the evolution has already been computed for 845 million 
years using conventional integration techniques on the Digi- 
tal Orrery (Sussman & Wisdom 1988), and comparison can 
be made to those results. 

We have chosen to use the second-order version of the 
mapping, which optimizes the agreement of the mapping 
Hamiltonian with the true Hamiltonian in accordance with 
our original motivation based on the averaging principle. We 
have used the exact form of the interaction Hamiltonian, and 
Pluto is given a Jacobi index below those of the massive plan- 
ets. Of course, in order to make comparisons the initial con- 
ditions and parameters must be the same as those used in the 
Digital Orrery integrations (Applegate et al. 1986). The 
only parameter left to choose is the step size, or mapping 
period. The map is used in the “qualitative” mode and the 
step size is chosen to be relatively large. A number of prelimi- 
nary tests indicate that the map does not work well for this 
problem if fewer than five steps are taken per Jupiter orbit 
period, which is about 12 yr. To add a margin of safety, a step 
size of 1 yr was chosen. This may be compared to typical 
steps of 40 days or less that have been used in other studies of 
the outer planets using conventional numerical integration 
techniques. The relative energy error oscillates as expected, 
and, using this step size, has a rather large peak to peak 
amplitude of about 10~5. The map is remarkably fast. A 
billion year evolution of the outer planets takes only 14 days 
on a Hewlett-Packard HP9000/835 RISC workstation. 

All of the principal results of Sussman & Wisdom ( 1988) 
are reproduced in the mapping evolution. For example, the 
argument of perihelion of Pluto again displays a 34 million 
yr modulation. The quantity /z = e sin 67, where 67 is the lon- 
gitude of perihelion, displays its strong 137 million yr period. 
This is illustrated in Fig. 1 which is to be compared with h as 
computed using the Stormer multistep predictor on the Dig- 
ital Orrery, shown in Fig. 2. The two plots are not identical, 
but the similarity is astounding. The inclination of Pluto 
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Fig. 1. The orbital element h = esinfö for Pluto as computed with the Fig. 3. The inclination of Pluto for a billion years as computed with the 
mapping. mapping. 

again displays even longer periods. Figure 3 presents the 
inclination of Pluto for a billion years as computed with the 
map; and, for comparison, Fig. 4 presents the inclination of 
Pluto from the Digital Orrery computation. In the region of 
overlap the two plots are again remarkably similar. The ob- 
served differences can probably all be attributed to the differ- 
ent sampling times in the latter part of the Digital Orrery 
computation, and to slightly different frequencies in the two 
evolutions. Even used in the “qualitative” mode, these n- 
body maps are remarkably good. It is interesting that at the 
end of the mapping calculation, which was longer than the 

Fig. 2. The orbital element h = esinsjfor Pluto as computed with a con- 
ventional numerical integration method on the Digital Orrery. The sam- 
pling frequency was decreased in the latter part of the run. 

Orrery integration, the inclination reaches a new maximum 
which gives the impression of a secular increase and at least 
indicates the presence of periods longer than a billion years 
in the motion of Pluto. The motion of Pluto appears to be 
inexhaustible, a property which is consistent with the nu- 
merical evidence that the motion of Pluto is chaotic. 

Finally, the chaotic character of the motion of Pluto has 
been confirmed using the mapping method. The divergence 
of nearby trajectories has been computed using the two-tra- 
jectory method. The plots are qualitatively the same as the 
one shown in Sussman & Wisdom ( 1988). In that study the 
final Lyapunov exponent calculation was begun halfway 

Fig. 4. The inclination of Pluto for 845 million years as computed with a 
conventional numerical integration method on the Digital Orrery. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
91

A
J 

 1
02

.1
52

8W
 

1538 J. WISDOM AND M. HOLMAN: SYMPLECTIC MAPS 

through the computation; here the Lyapunov exponent cal- 
culation was started at the beginning of the run. Since the 
two calculations are not directly comparable, they will not 
be shown here. The timescale for exponential divergence is 
again about 20 million yr. This confirmation of the positive 
Lyapunov exponent on a different computer with a different 
length floating point mantissa, with such a different integra- 
tion method, using a somewhat arbitrarily chosen step size 
which is an order of magnitude larger than the special step 
size used in the Digital Orrery integrations, considerably 
strengthens the conclusion of Sussman & Wisdom (1988) 
that the motion of Pluto is chaotic. Of course, it is probably 
wise to remain a little suspicious until the dynamical mecha- 
nisms are properly understood. 

1538 

This is now the longest evolution of the outer planets to 
date. The remarkable agreement of this evolution with that 
computed with the Digital Orrery is a strong testimony to 
the validity of the averaging principle, and to the usefulness 
of the new «-body maps. 
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