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Abstract. Modified equinoctial elements are introduced which are
suitable for perturbation analysis of all kinds of orbit. Equations of
motion in Lagrangian and Gaussian forms are derived. Identities
connecting the partial derivatives of the disturbing function with
respect to equinoctial elements are established. Numerical comparisons
of the evolution of a perturbed, highly eccentric, elliptic orbit
analysed in equinoctial elements and by Cowell's method show satisfac-

tory agreement.

1. Introduction

Perturbed satellite orbits are often studied theoretically or numerically
by using Lagrange's planetary equations (Cornelisse et al., 1979):
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These equations are important because they isolate the fast motion in
the phase angle defining position in the orbit. This serves as the basis
for many analytical developments. Disadvantages of employing classical
Lagrangian elements, a, e, i, w, 2, T are that the right ascension of
the ascending node becomes indeterminate as the inclination tends to
zero, and the argument of perigee becomes indeterminate as the eccentric-
ity tends to zero.

Many schemes of orbital elements which avoid these difficulties
have been developed, ranging from standard transformations applied to
general canonical elements (Kaula, 1966), to specific sets of elements
(e.g. Broucke and Cefola 1972; Cohen and Hubbard 1962; Giacaglia 1977).
It is generally advisable to employ elements which are not too far
removed from the classical ones; then transforming and interpreting them
in terms of physically significant parameters is relatively easy. To this
end, Cefola and his co-workers have made a good case for the use of equi-
noctial orbit elements.

For some purposes it is desirable to employ a 'fast variable'
(phase angle) as the sixth 'element'. In particular, the Stroboscopic
Method (Roth 1979) assumes such a formulation, so that a regular pertur-
bation technique can be used with the fast variable as independent
variable. In such cases it is natural to modify the equinoctial elements
by choosing true longitude L, in place of mean longitude AO, as the
element fixing position in the orbit. Further, by replacing semi-major
axis a by semi-latus rectum p, we obtain a set of orbit elements of the
prescribed form which are applicable to all orbits, and have non-singular
equations of motion (excluding the case i = 7; but this can be handled
by an appropriate re-definition, as in Cefola, 1972). With these
considerations, we define modified equinoctial elements thus*:

p = a(l-e2)
= e cos(w + Q)

e sin(w + Q)

i

(2)

tan i/2 cos Q

tan i/2 sin Q
Q +w + Vv
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I

where v is true anomaly.

2. Review of Theory of Orbit Elements

Suppose a;, i =1 to 6, represent a set of orbit elements whichf together
with t, uniquely fix position and velocity of a satellite relative to

a fixed Cartesian frame having the centre of attraction as origin.
Further, suppose a perturbative acceleration (additional to the accelera-
tion of the ideal Keplerian orbit) can be expressed as the gradient of

a disturbing function R = R(x). Then (using repeated suffix convention)

* This follows the European Space Agency's notation.
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where [aj, ai] is a Lagrangian bracket, and R is the disturbing function

expressed in terms of a and t. Inverting equations (3) gives the equa-
tions of motion

da ~

i R
i oR 4)
dt (aj’ ;) aaj (

where (aj, ai) is a Poisson bracket. So derived, these equatinos of

motion are unique. Nevertheless, the right hand sides can be expressed

in many equivalent forms, and this can be important when checking the
equations by alternative derivations. To see how such forms can arise,
observe that R is independent of velocity %, and hence R always satisfies
three identities

~ o dd.
00, 9%,
] i

By adding multiples of the left-hand sides of (5) into the right-hand
sides of (4), many different forms of the equations may be generated.
(This freedom does not exist in the Gaussian form of the equations,
where the perturbative accelerations are uniquely specified). Three
identities equivalent to (5) are given in the Appendix for classical
elements: and similar identities for the equinoctial elements are also
found.

3. Equinoctial Equations of Motion

By differentiating equations (2) with respect to time, the derivatives

of the (modified) equinoctial elements can be found in terms of classical
orbit elements and their derivatives. For the sixth equation it is
convenient to use

dv _Yup _ (de , da ___ .\
at = 2 T lat Tax % (6)

Then using equations (1), and expressing classical elements in terms of
equinoctial elements gives
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Finally, by regarding R (a, e, i, w, @, t-1) as transformed into

R(p, £, g, h, k, L), we obtain the required equations of motion:
Define auxiliary (positive) variables
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Although we have described (8) as 'the' equations of motion, again
there will be many equivalent forms of the right-hand sides of these
equations.

This analysis holds in the first instance for elliptic motion only.
However, the equinoctial elements used here are well-defined for
parabolic and hyperbolic motion also; it follows by the principle of
analytic continuation that equations (8) apply for all motions (i =7
excepted).

The Gaussian equations of motion corresponding to (8) can be
obtained in the same way. They reduce to

dp _ 2pc /p
dt = w u

af /P {S cin L + [(wtl) cos L + f]C g(h sin L - k cos LlN}
dt U W W

dg _ /p {-S cos L + [(wtl) cos L + g]C  f(h sin L - k cos_L)N

dt U W w
2

dh s N

Ere / ﬁ Sw  COS L (9)
2

dk _ /p s N

T 0 2w sin L

ar _ o (E\z , /B (hsinl - k cos L)N

dt {p) u w

where C, S, N are components of perturbing acceleration in the directions
perpendicular to the radius vector in the direction of motion, along the
radius vector outwards, and normal to the orbital plane in the direction
of the angular momentum vector.

4. Disturbing Function for Axial-symmetric Primary Body

For a primary body with axial symmetry (Cornelisse et al., 1979)
- o Re\n
R=-%2 3 J [——, P (sin @) (10)
r _, n\r )} n
n=«
where @ is the geocentric latitude, Pn is a Legendre polynomial, Jn

is a coefficient for the zonal harmonic, and Re is the primary equatorial
radius. In equinoctial elements,
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r = p/w and sin ¢ = 2(h 51n2L - k cos L)_
s
Hence (prime denotes derivative)
~ o R
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3q = L (n+1)J (—— (sin @)
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rS4 1 In=2 n r j
= B R \n
g—i = —2—“2 I(l+h2-k2)cosL + 2hk sinL} 33 (—e} (sin @)
rs 1 n=2 r
= 0 R \n
%% - 2 (hcos L + k sin L) & J (—g) P' (sin ¢
r52 =2 nyr
n
-2 ( L - f sin L) ; (n+1)J (Eg P (sin @)
w (9 cos si - nkr ) n

Substituting these equations in (8) theoretically determines the pertur-
bations to an orbit described by a satellite of such a primary body.

5. Numerical Study

In order to check the validity of equations (8), we

have made a numerical

study of the perturbations on a highly eccentric elliptic orbit caused
by an axial-symmetric primary body, using independent formulations in
equinoctial elements and Cowell's method. The initial orbit chosen was

(all units in kg, km, sec. system):
a = 244 a = 24419.205
e = 0.726 e = 0.726683

i=27.0 deg

w =20

Q=20

v = 0 at initial time.

The primary body was taken to be earth:
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U = 398603.2
R = 6378.165
J,= 0.00108263
Jy= -2.51.107°
J,= -1.60.107°
Je= -1.3.1077

_ -7_
Jg= 5.0.10

Digital computer programs were written in FORTRAN, with double precision
variables (nominally 16 significant decimal digits). Integrations were
performed using a fourth-order Runge-Kutta-Merson routine, incorporating
automatic step-length adjustment. Truncation tolerances for each step

of integration were set at

lO-6 (p and Cartesian co-ordinates and velocities)

lO_9 (non-dimensional elements f, g, h, k, L).

Table I compares the orbit state after a time interval of two days (four
and a half complete orbits), as found by both methods.

TABLE T

Formulation Equinoctial Cowell's method
a 24331.443 24331.443

e 0.72557888 0.72557888

i, deg. 26.988272 26.988272

w, deg. 1.199160 ‘ 1.199160

Q, deg. 359.280136 359.280136

v, deg. 186.307367 186.307368

To the accuracy quoted, no discrepancy greater than three units in the
last decimal place was found over the whole time interval: agreement is
very satisfactory. In addition, for the equinoctial formulation, the
total specific energy - u/2a - R was found to be constant to 10 signifi-
cant decimal digits, and the polar component of angular momentum

Vup cos i was found to be constant to 14 significant decimal digits.
Again, this checks very satisfactorily. Figure 1 illustrates the short-
period variation in elements a, e, and i, over the first complete orbit.
Figure 2 illustrates short-period and secular variations in elements

w en Q over half the time interval considered.
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Appendix

Identities between Partial Derivatives of the Disturbing Function

Set F=[scC N'[T, the column vector of perturbative acceleration
components relative to a moving radial frame of reference. Then the
gradient of R(x), expressed as a column vector, gives

5R
[sz] = MF,
1

where M is the matrix representing the transformation from the radial
reference frame to the inertial reference frame. Introduce the state
vector
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It is convenient to regard R as a joint dissipation-potential function
R(X), in which the (augmented) gradient components in the last three
places correspond to zero perturbative acceleration components in the
radial reference frame:

=6

In matrix notation, the transformation between grad R(a) and grad R{X)

is
dat . 3a.| |oX.
i i 7
SO
~ . 39X
OR | _ F 41 w0
[aal =Q [O , where Q [Sa.] [o M]
1 - 1
Then

-1 [er7Y . [F

)

aai 10

The last three rows of Q_l generate three identities connecting the

partial derivatives aR/aai. In the interests of simplification it is

permissible to scale these last three rows, or add multiples of them
into the first three rows, without destroying the validity of these
equations. -1

We have found @, and hence Q (appropriately simplified ad
described), for both classical and equinoctial elements. For classical
elements a, e, i, w, 9, T

- L Qé yrany (2 + e cos V) éé =S
a cos v Ode P dw
1 3R _
- 8(1) - C-
____L___ﬂ;_ = N
r sin(w+v) 91
. 8% (2e-+e2 cos vV + cos v\ Q: é E— cos v QE =0
sin v 5= - 5w 3T~
de e(l—ez) ) eV u
a2 cos V a_R 3R _ sin V(2+ecosv) dJR _3acos v, (t_T)_a_R - 0
r da " e 2 dw 2r 9T

l-e

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1985CeMec..36..409W

rTOB5CENEE -, 36 ~40ON

A SET OF MODIFIED EQUINOCTIAL ORBIT ELEMENTS 419
Qé _ tanngv} gﬁ + tag wfv gﬁ - 0.
o1 tan i  dw sin 1 9%
For equinoctial elements », £, g, h, k, L
w_cos L gé _wsin L 3R _ S
- r of r dg
_g9R  fOR 13R _
r ot Tr3g T ¥ L ¢
s°h 3R %k 3R
: At ; ﬁ—N
2r{h sin L - k cos L) dh  2r(h sin L - k cos L)

3R
sin L 3F - coOs L 3g =0
Qé LB+ (wtl) cos L gé L 9t (wtl) sin L oR 0
X - 2 R % s 3R , 3R
oR oR s cos L R s sin L _B-+_7.= 0
" 9%3F "3 " Z(hsinL - k cos 1)oh  2(h sin L-kcosL)dk 3L
Here
s2 =1 + h2 + k2 and w =1+ f cos L + g sin L.
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