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The. gravitational instability of a rotating gas disc (p = 0, where p is the gas pressure) is

studied by means of an energy principle.

The results are applicable to a wide class of per-

turbation functions. Instability of the disc relative to highly localized radial displacements

has been detected.

1. The problem of the stability of flat (rotating)
distributions of matter is of interest in the theory of
the evolution of galactic systems. In recent years
this problem has been investigated by a number of
authors (for example, see [1, 2]).

The main difference between investigation of
the stability of a rotating gravitating disc and the
known characteristics of stability of other bodies
of revolution that are astronomical objects (sphere,
ellipsoid, studies of which were initiated by Lyapu-
nov, and cylinder [4]) is a nonstandard form of
Poisson's equation. In the general case, an attempt
to determine the eigenvalues of the system of equa-
tions leads to a very complicated integro-differen-
tial equation. The feasibility of the reduction of the
initial system to a differential equation is associated
with a fairly strict restriction on the class of per-
turbed functions.

Thus, an instability criterion for a rotating gra-
vitating disc was suggested in [1] on the basis of a
quasi-classical approximation, i.e., for sufficiently
localized displacements. It was shown that instabi-
lity results in the disc acquiring a spiral structure
when the displacements depend on the angle ¢.

In [2], where the problem of the stability of the
disc was solved by the determination of the eigen-
values of the system of equations (1)-(4), the per-
turbed functions were chosen of the form ~ exp[i(kr
+ wt + me)], which, generally speaking, is without
any foundation for an inhomogeneous finite system.

By (lzontrast to [1], where the mathematical
problem ‘was reduced to the determination of the
eigenvalues of a system of differential equations in
the quasi-classical approximation, i.e., for suffi-
ciently localized displacements, and the other pre-
ceding papers (see review [3] and the papers cited
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there), whose authors, following Jeans, considered
periodic perturbations leading to the breakup of the
system into individual condensations (in other words,
to star formation), the present paper uses a varia-
tional principle which allows us to draw conclusions
concerning the stability of a disc relative to a wide
class of perturbed functions. As an example, it is
demonstrated that a disc is unstable relative to dis-
placements of the form exp(—x%/A?), which lead to
the escape of matter from the edge of the disc.

A physical analog of this type of instability is
the rotational instability of a rotating spherical star
which causes the ejection of matter from the equa-
tor [3].

2. The stability of a rotating cold gas disc
(p = 0, where p is the gas pressure) is investigated
in the present paper. The stability problem is re-
duced to the investigation of the time development
of small oscillations about the equilibrium state.
For low-amplitude oscillations we can make use of
the linearized equations of motion. Let o, v, and ¢
represent small deviations of the density, velocity,
and potential from their equilibrium values o (),
v®, and ¥ . All variable quantities will be as-
sumed to depend only on the coordinate r. We will
assume that the perturbations are of the form
A(r, t) = A(r) exp(—iwt + img), where w is the fre-
quency of the perturbations.

The linearized hydrodynamic equations in cy-
lindrical coordinates for the cases m = 0 can be
written in the form!

!The variational principle used below is applicable when m = 0,
For higher modes (m = 0) the system of Eqgs.(1)-(4) is found to be
nonself-adjoint.
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Here k is the gravitational constant, @ is the radius
of the disc. Equation (1) is the continuity equation,
(2) and (3) are the Euler equations of motion, while
(4) describes the perturbed gravitational potential
of the disc.

We will study Eqgs.(1)-(4) with the help of an
energy principle.

Let us write Eqs.(2) and (3) in the form

PE 0P | 2040 OE,
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0 ) Ovg® 88
oz ar ot (32)

Here we have carried out the following change of
variables: vy = 9£,/8t, vo = 3¢ q,/at, where &,
§¢ are arbitrary displacements along the coordi-
nates r and ¢.

Let us add the last two equations after multi-
plying the first by £,. and the second by £ @ We
thus obtain an expression for the variation of the
potential energy of small oscillations:
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In deriving formula (5) we have used expression (4),

after substituting the density o(r') into it from Eq.(1).

Let us write (5) in the form

1

W= ——
8 2
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So

(52)
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where F(§,) is the force acting on a surface element
of the disc in the radial direction. When 6W > 0,

the direction of the force is opposite to the direction
of displacement and the disc is stable. When 6W<0
the disc is unstable.

The equation of the small oscillations (5)
can be obtained from the variational principle
6{f Ldt} = 0, where L is the Lagrangian,equal to
the difference of the kinetic energy

r— —;- { o0 (—‘;f—’)z ds ©)

and the potential energy W. This follows directly
from the self-adjointness of Eq.(5) because after
some transformations expression (5) can be reduced
to a form symmetrical with respect to £ and n:?

§W = —n Sa{kc@(r) { [n(r)ﬁ(r’ )0 ()’
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where 7 is an auxiliary quantity (displacement) sa-

tisfying the same boundary conditions as £[£(a) = 0].
In accordance with observational data on the

distributions of density and angular velocities in

flat galactic subsystems [5-6], we will consider

two particular cases:

% when r>¢>0,
1) 0'(0)(1’) = o when 0<<r<e, (8)
% when r>e>0,
(0) =
2) QO(r) QO when 0<r<e, ©

where Q((’)(r) is the angular velocity of rotation of
the disc and c;,5 = const. Let us take the displace-
ment to be of the form

& = exp (—uz?), (10)
where p = 1/A%, A being the rms displacement, and
2= (r— ro)z. With this choice of displacement,

2symmetry with respect to r and r' is satisfied automatically.
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the largest contribution to expression (5) comes
from the vicinity of the point ry, so that

‘\? d9
Cyr2—r2—2rr cos 6

-

& d9 27‘02

~ e ~1 — 11
R T == e

Expansion (11) is valid for
r—r ~ALr, (12)

i.e., according to (8), in the region where 0(0)(r)~ 1/r.

The choice of displacement in the form (10) is
governed by the ease with which integral (5) can be
evaluated and it, like any other arbitrary form of
the displacement, allows us to establish the suffi-
ciency criterion for the instability of the system.

The system of Eqgs.(1)-(4) in the zero-order ap-
proximation gives the relationship between the un-
perturbed values of the velocity and density:

o (r'yds’
Y2+ r2—2r cos 0 ’
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Taking this equation into account, as well as (§),
(10), and (11), we find the following expression for
the potential energy of the system after exponen-
tially small terms have been neglected:3

6W=—Kn<—i—ln2uroz+4ln%) , (14)
0

where K is a constant with dimensions of energy
and is a combination of ¢y, &, and k. Using condi-
tion (12), we find that 6W < 0.

In the case when the angular velocity of rota-
tion .Q(o)(r) decreases with increasing distance from
the center of the disc (9), the potential energy with
small exponential terms neglected takes the form?

3K'w’h
8urgz ’

W = — (15)

where K' is a constant with dimensions of energy.
In order of magnitude, expression (15) is much

less than the analogous expression (14); this is ex-

plained by the fact that in the case @) ~ 1/r the
term responsible for rotation in formula (5) be-
comes zero. Therefore, the instability increment

calculated from the formula
W2 = _ﬂ___ ) (16)
{ oog2ds

So

is much higher in case (8) than in case (9) and is
given by . :

3K,
412¢a ’

@~ —

(7

where Kj is a constant.
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3In order for us to be able to make use of the table of integrals [7],

it is convenient to carry out the following transformation:
ro?
In

ey It In@ =)t ne + )

and then to make use of the formula
In (22 — 2?2 = 2In (22 — 2'2)0 (22 — z"2)
+ 21n (22 — 22) § (22 — 22),
where
{when 22 << 22
0 when /2 > «2

0(z2 —2"?) = {

*In order for us to be able to make use of the tables of integrals
[7], it is convenient to differentiate the integral

@1y

ro2
D(z)= S In ———— e~w="?yux’2dz’
@ —2)?
To

with respect to the parameter x.
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