Preliminary seismic study of the γ Doradus COROT target HD 49434

M.-P. Bouabid1, K. Uytterhoeven2,3, A. Miglio4, J. Montalban4, M.-A. Dupret5, E. Niemczura6,7, P. Mathias1, A. Noels4, and A. Grigahcène8

1 UMR 6525 H. Fizeau, UNS, CNRS, OCA, Campus Valrose, 06108 Nice Cedex 2, France. bouabid@oca.eu
2 INAF-OABrera, Via E. Bianchi 46, 23807 Merate, Italy
3 Instituto Astrofísica de Canarias, Calle Via Lactea s/n, 38200 La Laguna, Spain
4 Institut d’Astrophysique et de Géophysique de Liège, 17 Allée du 6 Août, 400 Liege, Belgium
5 LESIA, CNRS UMR 8109, Observatoire de Paris, 92125 Meudon, France
6 Institute of Astronomy, KULeuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
7 Astronomical Institute of the Wroclaw University, ul. Kopernika 11, 51-622 Wroclaw, Poland
8 CRAAG, Algiers Observatory BP 63 Bouzareah, 16340, Algiers, Algeria

Individual Objects: HD 49434

HD 49434, a new challenge for asteroseismology

HD 49434 is a hot F1V γ Doradus star, selected as a primary target of the CoRoT Nov. 2007/Mar. 2008 long run. This star has been the subject of an extensive ground-based photometric and spectroscopic campaign before and during the space run (Uytterhoeven et al. 2008).

Strömgren indices from GAUDI database and TEMPOLOGG package (Napiwotzki et al. 1992, Künzli et al. 1996) give $T_{\text{eff}} = 7300 \pm 200$ K, $\log g = 4.21 \pm 0.20$, $[Fe/H] = 0.01 \pm 0.20$. Bruntt et al. (2004) by using 2MASS photometry and H_a line profile obtain the same T_{eff}, a higher $\log g$ (4.40 ± 0.45) and a slightly lower metallicity $[Fe/H] = -0.04 \pm 0.21$. On the other hand, a spectroscopic analysis by Gillon & Magain (2006) gives a similar $\log g$ (4.43 ± 0.20) but a value of T_{eff} (7632 ± 126 K) 1σ higher than previous determinations. Given the location of HD 49434 near the blue border of the γ Dor instability strip (IS), an accurate determination of T_{eff} is crucial and further investigations are hence required.

Stellar models and stability computation

Ground-based observations of HD 49434 allowed Uytterhoeven et al. (2008) to classify HD 49434 as a hybrid pulsator, since it shows four frequencies (from 0.2 to 1.7 d$^{-1}$) in the typical domain of g-modes in γ Dor pulsators, as well as six frequencies (from 5 to 12 d$^{-1}$) with values in the range of δScuti p-modes. The simultaneous presence of both p- and g-modes makes this star an extremely interesting target for asteroseismic modelling.

The evolutionary tracks and instability strips we used were computed with the stellar evolution code CLES (Code Liégeois d’Evolution Stellaire - Scuflaire et al. 2008a), the adiabatic oscillation code LOSC (Scuflaire et al. 2008b) and the version of the non-adiabatic oscillation code MAD including the convection-pulsation interaction (Grigahcene et al. 2005). Figure 1 shows that, according to the chosen error box in a (log L,$\log T_{\text{eff}}$) diagram, HD 49434 is located either at the blue border of the γ Dor IS or outside the IS. Taking all these observational constraints (global parameters, seismic frequencies) into account, we shall attempt to obtain
Figure 1: Location of HD 49434 in the (log L, log T_{eff}) diagram. 1σ (full lines) and 2σ (dotted lines) error boxes of HD 49434: left/black box for Gillon & Magain (2006) and right/grey one for Bruntt et al. (2004). The diagonal lines show the constraints on the radius of this star (Masana et al. 2006). Points and triangles show the γ Dor IS derived from the Liège Grid of Models.

a best fit for HD 49434 and discuss the uncertainties affecting the models together with their effects on the stability results. Results of this modelling will be presented in a future paper.

Acknowledgments. MPB acknowledges the financial support granted by the HELAS Consortium. KU acknowledges financial support from a European Community Marie Curie Intra-European Fellowship, contract number MEIF-CT-2006-024476. The research of AM and JM is supported by Prodex-ESA Contract Prodex 8 COROT (C90199).

References